
Foundations of Fully Homomorphic Encryption

Hilder Vitor Lima Pereira
Postdoctoral researcher at COSIC, KU Leuven

ISC Virtual Winter School

01 Feb 2023

1/62



2/62

Table of Contents

High-level intro to FHE

Hard problems used to build FHE

Constructing FHE with RLWE

State-of-the-art FHE schemes



3/62

Computing on encrypted data



3/62

Computing on encrypted data



3/62

Computing on encrypted data



3/62

Computing on encrypted data



4/62

How can the hospital use machine learning services provided by the
cloud without revealing patients’ data?



5/62

The cloud has to do
something like

c̄ ← Eval(pk, f , c)

And the hospital:

f (x) = Dec(sk, c̄)



5/62

The cloud has to do
something like

c̄ ← Eval(pk, f , c)

And the hospital:

f (x) = Dec(sk, c̄)



6/62

Fully Homomorphic Encryption (FHE)

Let Eval be a function that receives ciphertexts ci ’s encrypting
mi ’s, a circuit Cf , and the public key pk, and outputs

c ← Eval(pk,Cf , c1, ..., cn)

such that

Dec(sk, c) = f (m1, ...,mn).

Let E = (KeyGen,Enc,Dec,Eval) be an encryption scheme. We
say that E is fully homomorphic if Eval is correct for all circuits.



7/62

Eval

x1

x2

...

xn

f

pk

f (x1, ..., xn)

Figure: Homomorphic evaluation: red represents encrypted data.



8/62

“Trivial” applications of FHE

I Search on Google, DuckDuckGo, etc., without revealing the
query nor the results.

I Use data analysis provided by the cloud without disclosing
client’s data.

I Encrypting genomics data to simplify researcher’s access to
them.



9/62

Applications of FHE in cryptography

I Reducing proof size in Non-interative Zero-Knowledge Proofs
[GGI+15].

I One of the main tools in e-voting systems [CGGI16].

I Essential for efficient private information retrieval [MCR21].

I Key ingredient of compact deniable encryption [AGM21].

GGI+15 Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam Smith, Using Fully
Homomorphic Hybrid Encryption to MinimizeNon-interative Zero-Knowledge Proofs. In Journal of
Cryptology 2015.

CGGI16 Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachène, A Homomorphic LWE Based E-voting
Scheme. In PQcrypto 2016.

MCR21 Haris Muhammad Mughees, Hao Chen, and Ling Ren, OnionPIR: response efficient single-server PIR. In
ACM SIGSAC 2021.

AGM21 Shweta Agrawal, Shafi Goldwasser, and Saleet Mossel, Deniable Fully Homomorphic Encryption from
Learning with Errors. In CRYPTO 2021.



10/62

Overview of FHE

Pros

I Very general and
powerful

I Optimal 2-party secure
computation

I Post-quantum secure

Cons

I Large ciphertext expansion
(communication)

I It can be expensive for the
client

I It is expensive for the server

I Hard to implement in practice



11/62

How FHE works

I Each FHE scheme offers some homomorphic operations (e.g.,
addition and multiplication)

I To evaluate f , we must represent f using the available
homomorphic operations

I For example, f (x) = x2 + x would be

c ′ = HE.Mult(c , c , pk) then output HE.Add(c ′, c)

I Thus, homomorphic evaluation means executing a sequence of
basic homomorphic operations.



12/62

How FHE works

Most remarkable property: ciphertexts are noisy

I Fresh ciphertexts (output by Enc) have very small noise

I Each homomorphic operation increases the noise

I If noise is larger than some bound B, then decryption fails

B B

Some operations

B

Some operations

I So, the number of operations is limited...



13/62

So, we have the basic ingredients, but since the noise grows, we
can only evaluate circuits with bounded depth...

Is there a way to turn “bounded” or somewhat homomorphic
schemes in fully homomorphic encryption schemes?

We need a way to reduce the noise in the ciphertexts...



14/62

Bootstrapping

Gentry’s idea: evaluate decryption function homomorphically!

Eval

c

sk

Dec

pk

Dec(sk, c)

Figure: sk is encrypted. We obtain a new encryption of m = Dec(sk, c).



14/62

Bootstrapping

Gentry’s idea: evaluate decryption function homomorphically!

Eval

c

sk

Dec

pk

Dec(sk, c)

Figure: sk is encrypted. We obtain a new encryption of m = Dec(sk, c).



15/62

Bootstrapping

(1) Perform some homomorphic operations

(2) Noise gets close to the limit

(3) Evaluate decryption homomorphically

(4) Go to (1)

I Bootstrapping is usually slow

I Bootstrapping requires a lot of key material



16/62

Table of Contents

High-level intro to FHE

Hard problems used to build FHE

Constructing FHE with RLWE

State-of-the-art FHE schemes



17/62

Hardness assumption

(Most) FHE schemes are based on these two problems

I learning with errors problem (LWE)

I ring learning with errors problem (RLWE).



18/62

Learning with errors

I Fix a dimension n and modulus q ∈ Z
I Let ~s ∈ Zn

q be a secret vector

I Now imagine you are given many random “multiples” of ~s,
that is,

(~ai , bi := ~ai · ~s) ∈ Zn+1
q

where ~ai is uniformly sampled from Zn
q.

How can you recover ~s?



19/62

Learning with errors

Define

A :=


− ~a1 −
− ~a2 −

...
− ~an −

 ∈ Zn×n
q and ~b :=


b1

b2
...
bn

 ∈ Zn
q

Then we know that

A · ~s ≡ ~b (mod q)

Thus, we can recover ~s by simply solving the linear system...



20/62

Learning with errors

Instead of publishing “multiples” of ~s, we add some small errors:

(~ai , bi := ~ai · ~s + ei ) ∈ Zn+1
q

where ~ai is uniformly sampled from Zn
q and ei ∈ Z is “small”

How can you recover ~s?

Now we know that

A · ~s + ~e ≡ ~b (mod q)

but both ~s and ~e are unknown.



20/62

Learning with errors

Instead of publishing “multiples” of ~s, we add some small errors:

(~ai , bi := ~ai · ~s + ei ) ∈ Zn+1
q

where ~ai is uniformly sampled from Zn
q and ei ∈ Z is “small”

How can you recover ~s?

Now we know that

A · ~s + ~e ≡ ~b (mod q)

but both ~s and ~e are unknown.



21/62

Hardness assumption

(Most) FHE schemes are based on the ring learning with errors
problem (RLWE).

I First, fix a power of two N = 2k

I Define the ring R = Z[X ]/〈XN + 1〉
I That is, R is the set of polynomials modulo XN + 1

I Then fix a positive integer q

I Define Rq = R/qR = Zq[X ]/〈XN + 1〉
I So, Rq is the set of polynomials of degree less than N and

coefficients modulo q

I Example: N = 4 and q = 7, then

Rq = {a0 + a1 · X + a2 · X 2 + a3 · X 3 : 0 ≤ ai ≤ 6}



22/62

The RLWE problem

Fix a secret polynomial s ∈ R

Let’s say you are given multiples of s:

I Sample ai uniformly from Rq

I Define bi := ai · s mod q

You have many pairs (ai , bi ) ∈ R2
q .

Then it is easy to recover s with linear algebra
In particular, if some ai is invertible, then a−1

i · bi mod q reveals s

But if we had bi = ai · s + ei mod q, then

a−1
i · bi = s + a−1

i · ei︸ ︷︷ ︸
close to uniform

modq

that is, we would not recover s like this...



23/62

The RLWE problem

Fix a secret polynomial s ∈ R

I Sample ai uniformly from Rq

I Noise: small ei ← χ

I Let bi := ai · s + ei mod q

The RLWE hypothesis says that (ai , bi ) is indistinguishable from
uniform pairs of R2

q



24/62

Hardness of (R)LWE

Theory

Worst-case to average-case reductions:

Solving (R)LWE with parameters n,Q allows us to solve γ-SVP,
where γ = Õ(Q/n).

γ-SVP

O(1)

NP-Hard

O
(√

n/log n
)

Probably not
NP-Hard

O
(
nk
)

Probably not
NP-Hard

O (2n)

Easy
γ



25/62

Hardness of (R)LWE

Practice

I Pick parameters such that best attack takes exponential time

I Lattice estimator is used1

I Increasing n increases security

I Increasing q reduces security

1https://github.com/malb/lattice-estimator

https://github.com/malb/lattice-estimator


26/62

Table of Contents

High-level intro to FHE

Hard problems used to build FHE

Constructing FHE with RLWE

State-of-the-art FHE schemes



27/62

Using RLWE to encrypt

I The secret polynomial s ∈ R is used as the secret key.

I We choose a plaintext modulus t ∈ N
I RLWE samples (ai , bi ) with bi := ai · s + t · ei mod q also look

uniform

I If (ai , bi ) is uniform, then (ai , bi + m) mod q is also so

I In other words, (ai , bi + m) hides the message m

Encsk : m ∈ Rt 7→ (ai , bi := ai · s + t · ei + m) ∈ R2
q



27/62

Using RLWE to encrypt

I The secret polynomial s ∈ R is used as the secret key.

I We choose a plaintext modulus t ∈ N
I RLWE samples (ai , bi ) with bi := ai · s + t · ei mod q also look

uniform

I If (ai , bi ) is uniform, then (ai , bi + m) mod q is also so

I In other words, (ai , bi + m) hides the message m

Encsk : m ∈ Rt 7→ (ai , bi := ai · s + t · ei + m) ∈ R2
q



28/62

How to decrypt

Given (ai , bi := ai · s + t · ei + m) ∈ R2
q and the secret key s,

compute
e? = bi − ai · s mod q

then,
e? = t · ei + m mod q

If ‖t · ei + m‖∞ < q/2, then

e? = t · ei + m

Output e? mod t

This implies
‖ei‖∞ < q

2t



28/62

How to decrypt

Given (ai , bi := ai · s + t · ei + m) ∈ R2
q and the secret key s,

compute
e? = bi − ai · s mod q

then,
e? = t · ei + m mod q

If ‖t · ei + m‖∞ < q/2, then

e? = t · ei + m

Output e? mod t

This implies
‖ei‖∞ < q

2t



28/62

How to decrypt

Given (ai , bi := ai · s + t · ei + m) ∈ R2
q and the secret key s,

compute
e? = bi − ai · s mod q

then,
e? = t · ei + m mod q

If ‖t · ei + m‖∞ < q/2, then

e? = t · ei + m

Output e? mod t

This implies
‖ei‖∞ < q

2t



29/62

Representing ciphertext as polynomial (of polynomials)

We can see a ciphertext as a polynomial c(Y ) ∈ Rq[Y ]:

Encsk : m ∈ Rt 7→ c(Y ) = c0 + c1Y ∈ Rq[Y ]

where
c0 = a · s + t · e + m ∈ Rq

and
c1 = −a ∈ Rq

Then

c(s) = t · e + m



30/62

Noise growth

Now it is easy to see that homomorphic operations increase the
noise:

d(Y ) = c(Y ) + c̄(Y ) ∈ Rq[Y ]

Then,

d(s) = c(s) + c̄(s)

= t · e + m + t · ē + m̄

= t · (e + ē) + m + m̄

Thus, d(Y ) is an encryption of the sum, but with about twice the
noise.



31/62

Homomorphic multiplication

Let c(Y ), c̄(Y ) ∈ Rq[Y ]
In principle, both have degree 1 on Y .

Multiplying them

d(Y ) := c(Y ) · c̄(Y ) = d0 + d1Y + d2Y
2 ∈ Rq[Y ]

We can see that

d(s) = c(s) · c̄(s)

= (t · e + m) · (t · ē + m̄)

= t · (etē + em̄ + ēm) + mm̄

Two problems:

I Noise growth B 7→ B2

I Ciphertext size is growing



32/62

Toy example of homomorphic evaluation

We want to compute the function f (x , y) = (x + y)4 mod t
Start with c(Y ) and c̄(Y ) with noise bounded by σ

1. Hom. Add: d(Y ) = c(Y ) + c̄(Y )

2. Hom. Mul: u(Y ) = d(Y ) · d(Y ) ∈ Rq[Y ]

3. Hom. Mul: v(Y ) = u(Y ) · u(Y ) ∈ Rq[Y ]



32/62

Toy example of homomorphic evaluation

We want to compute the function f (x , y) = (x + y)4 mod t
Start with c(Y ) and c̄(Y ) with noise bounded by σ

1. Hom. Add: d(Y ) = c(Y ) + c̄(Y )

2. Hom. Mul: u(Y ) = d(Y ) · d(Y ) ∈ Rq[Y ]

3. Hom. Mul: v(Y ) = u(Y ) · u(Y ) ∈ Rq[Y ]

Degree

1. 1

2. 2

3. 4



32/62

Toy example of homomorphic evaluation

We want to compute the function f (x , y) = (x + y)4 mod t
Start with c(Y ) and c̄(Y ) with noise bounded by σ

1. Hom. Add: d(Y ) = c(Y ) + c̄(Y )

2. Hom. Mul: u(Y ) = d(Y ) · d(Y ) ∈ Rq[Y ]

3. Hom. Mul: v(Y ) = u(Y ) · u(Y ) ∈ Rq[Y ]

Noise growth

1. 2σ

2. (2σ)2

3. (4σ2)2 = 16σ4

Remember that we need final noise < q/(2t), thus,

q ≈ 32 · t · σ4



33/62

Toy example of homomorphic evaluation

With σ = 3.5 and t = 28, we have

q ≈ 32 · t · σ4 = 1229312 ≈ 221

Degree N of the cyclotomic polynomial is a free variable for now...
Then we choose a security level, e.g., λ = 128.
We plug (λ, σ, q) into the Lattice estimator and obtain N = 1024.

Our cyclotomic ring is

Rq = Z224 [X ]/〈X 1024 + 1〉



34/62

Problems with our homomorphic multiplication

We have a scheme homomorphic for additions and multiplications,
but

I noise grows exponentially

I ciphertext size grows exponentially

Let’s see how to solve the first problem...



35/62

Modulus switching

We saw that if ‖ei‖ ≈ B, then mult. produces ‖emult‖ ≈ B2.
The main idea is to somehow divide the ciphertexts by B, dividing
also the noise.
At the end, we should have∥∥e ′mult

∥∥ ≈ ‖emult‖ /B ≈ B

but the modulus is also reduced, from Q to bQ/Be



36/62

Modulus switching

What is the advantage of doing that?
Consider the following circuit with multiplication gates

B

B

B

B

B

B

B

B

B2

B2

B2

B2

B22

B22

B22

B23

B23
B24

L levels ⇒ final noise B2L

We need Q > B2L , thus logQ > log(B2L) = 2L · log(B) so,
exponential in L



37/62

Now consider that we modswitch

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q/B

B,Q/B

B,Q/B

B,Q/B

B,Q/B2

B,Q/B2

B,Q/B2

B,Q/B3

B,Q/B3

B,Q/B4

I L levels ⇒ final noise B and final modulus Q/BL

I We need Q/BL > B, thus Q > BL+1

I Therefore logQ > log(BL+1) = (L + 1) · log(B) so, linear in L



37/62

Now consider that we modswitch

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q/B

B,Q/B

B,Q/B

B,Q/B

B,Q/B2

B,Q/B2

B,Q/B2

B,Q/B3

B,Q/B3

B,Q/B4

I L levels ⇒ final noise B and final modulus Q/BL

I We need Q/BL > B, thus Q > BL+1

I Therefore logQ > log(BL+1) = (L + 1) · log(B) so, linear in L



37/62

Now consider that we modswitch

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q

B,Q/B

B,Q/B

B,Q/B

B,Q/B

B,Q/B2

B,Q/B2

B,Q/B2

B,Q/B3

B,Q/B3

B,Q/B4

I L levels ⇒ final noise B and final modulus Q/BL

I We need Q/BL > B, thus Q > BL+1

I Therefore logQ > log(BL+1) = (L + 1) · log(B) so, linear in L



38/62

Modulus switching: how is it really done?

Consider ciphertexts of the form (a, b) ∈ R2
Q with

b = −a · s + e + ∆ ·m

where ∆ = bQ/te

There are easy transformations between

b = −a · s + t · e + m←→ b = −a · s + e + ∆ ·m

Let Q = BL+1

Just define
ModSwt(a, b) = (a′, b′) ∈ R2

Q′

where
a′ = ba/Be and b′ = bb/Be



38/62

Modulus switching: how is it really done?

Consider ciphertexts of the form (a, b) ∈ R2
Q with

b = −a · s + e + ∆ ·m

where ∆ = bQ/te

There are easy transformations between

b = −a · s + t · e + m←→ b = −a · s + e + ∆ ·m

Let Q = BL+1

Just define
ModSwt(a, b) = (a′, b′) ∈ R2

Q′

where
a′ = ba/Be and b′ = bb/Be



38/62

Modulus switching: how is it really done?

Consider ciphertexts of the form (a, b) ∈ R2
Q with

b = −a · s + e + ∆ ·m

where ∆ = bQ/te

There are easy transformations between

b = −a · s + t · e + m←→ b = −a · s + e + ∆ ·m

Let Q = BL+1

Just define
ModSwt(a, b) = (a′, b′) ∈ R2

Q′

where
a′ = ba/Be and b′ = bb/Be



39/62

Modulus switching: how is it really done?
To see that ModSwt(a, b) = (a′, b′) = (ba/Be , bb/Be) is valid
ciphertext, we want to check that

b′ = −a′ · s + e ′ + (Q ′/t) ·m

For any polynomial u ∈ R[X ], we have

bue = u + ε

where ε ∈ R[X ] and ‖ε‖ ≤ 1/2
Therefore, defining Q ′ = Q/B, we have

b′ = b/B + ε

= (−a · s + e + (Q/t) ·m)/B + ε

= −(a/B) · s + e/B + ε+ (Q ′/t) ·m

By writing a′ := ba/Be = a/B + ε′, we have

b′ = −a′ · s + e/B + ε′ · s + ε︸ ︷︷ ︸
new noise e′

+(Q ′/t) ·m



39/62

Modulus switching: how is it really done?
To see that ModSwt(a, b) = (a′, b′) = (ba/Be , bb/Be) is valid
ciphertext, we want to check that

b′ = −a′ · s + e ′ + (Q ′/t) ·m

For any polynomial u ∈ R[X ], we have

bue = u + ε

where ε ∈ R[X ] and ‖ε‖ ≤ 1/2
Therefore, defining Q ′ = Q/B, we have

b′ = b/B + ε

= (−a · s + e + (Q/t) ·m)/B + ε

= −(a/B) · s + e/B + ε+ (Q ′/t) ·m

By writing a′ := ba/Be = a/B + ε′, we have

b′ = −a′ · s + e/B + ε′ · s + ε︸ ︷︷ ︸
new noise e′

+(Q ′/t) ·m



39/62

Modulus switching: how is it really done?
To see that ModSwt(a, b) = (a′, b′) = (ba/Be , bb/Be) is valid
ciphertext, we want to check that

b′ = −a′ · s + e ′ + (Q ′/t) ·m

For any polynomial u ∈ R[X ], we have

bue = u + ε

where ε ∈ R[X ] and ‖ε‖ ≤ 1/2
Therefore, defining Q ′ = Q/B, we have

b′ = b/B + ε

= (−a · s + e + (Q/t) ·m)/B + ε

= −(a/B) · s + e/B + ε+ (Q ′/t) ·m

By writing a′ := ba/Be = a/B + ε′, we have

b′ = −a′ · s + e/B + ε′ · s + ε︸ ︷︷ ︸
new noise e′

+(Q ′/t) ·m



40/62

Modulus switching: how is it really done?

Therefore, considering that B|Q,
ModSwt(a, b) = (a′, b′) := (ba/Be , bb/Be) outputs a valid
ciphertext modulo Q ′ = Q/B and with noise∥∥e ′∥∥ =

∥∥e/B + ε′ · s + ε
∥∥

≤ ‖e/B‖+
∥∥ε′ · s∥∥+ ‖ε‖

≤ ‖e/B‖+ ‖s‖ · N/2 + 1/2

By using low-norm secret key s, we finally obtain∥∥e ′∥∥ ≈ ‖e/B‖
as desired.



40/62

Modulus switching: how is it really done?

Therefore, considering that B|Q,
ModSwt(a, b) = (a′, b′) := (ba/Be , bb/Be) outputs a valid
ciphertext modulo Q ′ = Q/B and with noise∥∥e ′∥∥ =

∥∥e/B + ε′ · s + ε
∥∥

≤ ‖e/B‖+
∥∥ε′ · s∥∥+ ‖ε‖

≤ ‖e/B‖+ ‖s‖ · N/2 + 1/2

By using low-norm secret key s, we finally obtain∥∥e ′∥∥ ≈ ‖e/B‖
as desired.



41/62

Remaining problem: ciphertext is not compact

We solved the issue about the exponential noise growth.
But we still have a problem with the size of the ciphertext, which
grows when we multiply...

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

2

2

2

2

22

22

22

23

23

24

I L levels ⇒ degree 2L in Y

I Ciphertexts exponentially large: (2L + 1) · N · logQ bits



41/62

Remaining problem: ciphertext is not compact

We solved the issue about the exponential noise growth.
But we still have a problem with the size of the ciphertext, which
grows when we multiply...

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

degree 1 in RQ [Y ]

2

2

2

2

22

22

22

23

23

24

I L levels ⇒ degree 2L in Y

I Ciphertexts exponentially large: (2L + 1) · N · logQ bits



42/62

Making ciphertexts compact

Main idea: somehow transform degree-two ctxt after mult into
degree-one again

Remember, after hom. mult we obtain

c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ]

such that
c(s) = c0 + c1 · s + c2 · s2 = t · e + m

If we could construct c ′(Y ) = c ′0 + c ′1 · Y as

c ′0 = c0 + c2 · s2 and c ′1 = c1

then we would have
c ′(s) = c(s)

that is, c ′(Y ) would be a valid encryption of m, but with degree
one, as desired.



42/62

Making ciphertexts compact

Main idea: somehow transform degree-two ctxt after mult into
degree-one again

Remember, after hom. mult we obtain

c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ]

such that
c(s) = c0 + c1 · s + c2 · s2 = t · e + m

If we could construct c ′(Y ) = c ′0 + c ′1 · Y as

c ′0 = c0 + c2 · s2 and c ′1 = c1

then we would have
c ′(s) = c(s)

that is, c ′(Y ) would be a valid encryption of m, but with degree
one, as desired.



43/62

Making ciphertexts compact
But we cannot publish s2...

First idea: publish an encryption of s2: rlk(Y ) ∈ RQ [Y ]
such that rlk(s) = t · ẽ + s2

We have to assume circular security...

Now, given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ], we can take
compute

c ′(Y ) = c2 · rlk(Y ) ∈ RQ [Y ]

This should be an encryption of c2 · s2...
Finally, compute

cmult(Y ) := c0 + c1 · Y + c ′(Y )

Now, we can see that

cmult(s) = c0 + c1 · s + c ′(s)

= c0 + c1 · s + c2 · s2 + te ′

= t · e + t · e ′ + m

However, ‖e ′‖ = ‖c2 · ẽ‖ ≈ Q



43/62

Making ciphertexts compact
But we cannot publish s2...

First idea: publish an encryption of s2: rlk(Y ) ∈ RQ [Y ]
such that rlk(s) = t · ẽ + s2

We have to assume circular security...

Now, given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ], we can take
compute

c ′(Y ) = c2 · rlk(Y ) ∈ RQ [Y ]

This should be an encryption of c2 · s2...
Finally, compute

cmult(Y ) := c0 + c1 · Y + c ′(Y )

Now, we can see that

cmult(s) = c0 + c1 · s + c ′(s)

= c0 + c1 · s + c2 · s2 + te ′

= t · e + t · e ′ + m

However, ‖e ′‖ = ‖c2 · ẽ‖ ≈ Q



43/62

Making ciphertexts compact
But we cannot publish s2...

First idea: publish an encryption of s2: rlk(Y ) ∈ RQ [Y ]
such that rlk(s) = t · ẽ + s2

We have to assume circular security...

Now, given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ], we can take
compute

c ′(Y ) = c2 · rlk(Y ) ∈ RQ [Y ]

This should be an encryption of c2 · s2...
Finally, compute

cmult(Y ) := c0 + c1 · Y + c ′(Y )

Now, we can see that

cmult(s) = c0 + c1 · s + c ′(s)

= c0 + c1 · s + c2 · s2 + te ′

= t · e + t · e ′ + m

However, ‖e ′‖ = ‖c2 · ẽ‖ ≈ Q



43/62

Making ciphertexts compact
But we cannot publish s2...

First idea: publish an encryption of s2: rlk(Y ) ∈ RQ [Y ]
such that rlk(s) = t · ẽ + s2

We have to assume circular security...

Now, given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ], we can take
compute

c ′(Y ) = c2 · rlk(Y ) ∈ RQ [Y ]

This should be an encryption of c2 · s2...
Finally, compute

cmult(Y ) := c0 + c1 · Y + c ′(Y )

Now, we can see that

cmult(s) = c0 + c1 · s + c ′(s)

= c0 + c1 · s + c2 · s2 + te ′

= t · e + t · e ′ + m

However, ‖e ′‖ = ‖c2 · ẽ‖ ≈ Q



43/62

Making ciphertexts compact
But we cannot publish s2...

First idea: publish an encryption of s2: rlk(Y ) ∈ RQ [Y ]
such that rlk(s) = t · ẽ + s2

We have to assume circular security...

Now, given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ], we can take
compute

c ′(Y ) = c2 · rlk(Y ) ∈ RQ [Y ]

This should be an encryption of c2 · s2...
Finally, compute

cmult(Y ) := c0 + c1 · Y + c ′(Y )

Now, we can see that

cmult(s) = c0 + c1 · s + c ′(s)

= c0 + c1 · s + c2 · s2 + te ′

= t · e + t · e ′ + m

However, ‖e ′‖ = ‖c2 · ẽ‖ ≈ Q



44/62

Making ciphertexts compact

OK... This idea looks promising...
So far, we have

I c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ] encrypting m

I a relinearization key rlk(Y ) encrypting s2

So far, we can

I multiply rlk(Y ) by c2

I obtain cmult(Y ) of degree one encrypting m

I but noise of c2 · rlk(Y ) is too big (basically Q)

So, we need a way to multiply c2 by rlk(Y ) without increasing the
noise of rlk that much...



44/62

Making ciphertexts compact

OK... This idea looks promising...
So far, we have

I c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ] encrypting m

I a relinearization key rlk(Y ) encrypting s2

So far, we can

I multiply rlk(Y ) by c2

I obtain cmult(Y ) of degree one encrypting m

I but noise of c2 · rlk(Y ) is too big (basically Q)

So, we need a way to multiply c2 by rlk(Y ) without increasing the
noise of rlk that much...



45/62

Decomposing before mult to reduce noise

To avoid such noise growth, instead of multiplying by c2 directly,
we first decompose c2 in some base (e.g., binary decomposition),
then multiply by the digits we obtain...

I Fix a decomposition base B

I Let ` = dlogB(Q)e
I Define the “gadget vector” ~g = (B0,B1, ...,B`−1)

I Decomp: ∀ a ∈ ZQ , outputs

~a := (a0, a1, ..., a`−1) ∈ {0, ...,B − 1}`

such that

~a · ~g =
`−1∑
i=0

aiB
i = a



45/62

Decomposing before mult to reduce noise

To avoid such noise growth, instead of multiplying by c2 directly,
we first decompose c2 in some base (e.g., binary decomposition),
then multiply by the digits we obtain...

I Fix a decomposition base B

I Let ` = dlogB(Q)e
I Define the “gadget vector” ~g = (B0,B1, ...,B`−1)

I Decomp: ∀ a ∈ ZQ , outputs

~a := (a0, a1, ..., a`−1) ∈ {0, ...,B − 1}`

such that

~a · ~g =
`−1∑
i=0

aiB
i = a



46/62

Decomposing before mult to reduce noise

We can extend it to polynomials by decomposing each coefficient

Decomp: RQ → R`
B

a 7→ ~a := (a0, ..., a`−1) : ~a · ~g = a

Notice, we can use this Decomp to multiply by a polynomial mod
Q without increasing the noise up to Q...
If c encrypts m with noise e ∈ R, then ai · c encrypts ai ·m with
noise

‖ai · e‖ ≤ N ‖ai‖ · ‖e‖ ≤ N · B · ‖e‖

Thus, mult by multiplies the noise by N · B instead of Q.



46/62

Decomposing before mult to reduce noise

We can extend it to polynomials by decomposing each coefficient

Decomp: RQ → R`
B

a 7→ ~a := (a0, ..., a`−1) : ~a · ~g = a

Notice, we can use this Decomp to multiply by a polynomial mod
Q without increasing the noise up to Q...
If c encrypts m with noise e ∈ R, then ai · c encrypts ai ·m with
noise

‖ai · e‖ ≤ N ‖ai‖ · ‖e‖ ≤ N · B · ‖e‖

Thus, mult by multiplies the noise by N · B instead of Q.



47/62

Decomposing before mult to reduce noise

I Encrypt µ with the powers of the decomposition base B

I i.e., ~c := (c0(Y ), ..., c`−1(Y )) where ci (Y ) encrypts B i · µ
I Now, given a ∈ RQ , decompose it: ~a := Decomp(a)

I Compute

c(Y ) = ~a · ~c =
`−1∑
i=0

ai · ci (Y )

I Each ai · ci (Y ) encrypts µ · aiB i , so c(Y ) encrypts

µ ·
`−1∑
i=0

aiB
i = µ · a

I If noise ci (Y ) ≤ V , then noise of c(Y ) is ≈ ` · N · B · V



48/62

Thus, we can define the relinearization key as

~rlk = (rlk0(Y ), ..., rlk`−1(Y ))

where rlki (Y ) encrypts B i · s2

Given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ] encrypting m

I ~u := Decomp(c2)

I c ′(Y ) := ~u · ~rlk (enc of c2 · s2 with small noise)

I Define

cmult(Y ) := c0 + c1 · Y + c ′(Y ) ∈ RQ [Y ]

As discussed before,

cmult(s) = c0 + c1 · s + c ′(s) = te + te ′ + m

but now, ‖e ′‖ ≤ `NBV instead of ‖e ′‖ ≈ Q



48/62

Thus, we can define the relinearization key as

~rlk = (rlk0(Y ), ..., rlk`−1(Y ))

where rlki (Y ) encrypts B i · s2

Given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ] encrypting m

I ~u := Decomp(c2)

I c ′(Y ) := ~u · ~rlk (enc of c2 · s2 with small noise)

I Define

cmult(Y ) := c0 + c1 · Y + c ′(Y ) ∈ RQ [Y ]

As discussed before,

cmult(s) = c0 + c1 · s + c ′(s) = te + te ′ + m

but now, ‖e ′‖ ≤ `NBV instead of ‖e ′‖ ≈ Q



48/62

Thus, we can define the relinearization key as

~rlk = (rlk0(Y ), ..., rlk`−1(Y ))

where rlki (Y ) encrypts B i · s2

Given c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ [Y ] encrypting m

I ~u := Decomp(c2)

I c ′(Y ) := ~u · ~rlk (enc of c2 · s2 with small noise)

I Define

cmult(Y ) := c0 + c1 · Y + c ′(Y ) ∈ RQ [Y ]

As discussed before,

cmult(s) = c0 + c1 · s + c ′(s) = te + te ′ + m

but now, ‖e ′‖ ≤ `NBV instead of ‖e ′‖ ≈ Q



49/62

Homomorphic multiplication

During key generation: produce relinearization key

~rlk = (rlk0(Y ), ..., rlk`−1(Y ))

where rlki (Y ) encrypts B i · s2

Then, for every homomorphic multiplication we have two steps:
Multiplication itself:
enc(m0)

enc(m1)

(a′, a, b) ∈ R3
q

where b := a′ · s2 + a · s + t · e + m0 ·m1
⊗

Relinearization (Key switching):

I uses ~rlk

I maps (a′, a, b) ∈ R3
q back to a two-component ciphertext

(ā, b̄) ∈ R2
q encrypting m0 ·m1

Usually, we also perform modulus switching



49/62

Homomorphic multiplication

During key generation: produce relinearization key

~rlk = (rlk0(Y ), ..., rlk`−1(Y ))

where rlki (Y ) encrypts B i · s2

Then, for every homomorphic multiplication we have two steps:
Multiplication itself:
enc(m0)

enc(m1)

(a′, a, b) ∈ R3
q

where b := a′ · s2 + a · s + t · e + m0 ·m1
⊗

Relinearization (Key switching):

I uses ~rlk

I maps (a′, a, b) ∈ R3
q back to a two-component ciphertext

(ā, b̄) ∈ R2
q encrypting m0 ·m1

Usually, we also perform modulus switching



49/62

Homomorphic multiplication

During key generation: produce relinearization key

~rlk = (rlk0(Y ), ..., rlk`−1(Y ))

where rlki (Y ) encrypts B i · s2

Then, for every homomorphic multiplication we have two steps:
Multiplication itself:
enc(m0)

enc(m1)

(a′, a, b) ∈ R3
q

where b := a′ · s2 + a · s + t · e + m0 ·m1
⊗

Relinearization (Key switching):

I uses ~rlk

I maps (a′, a, b) ∈ R3
q back to a two-component ciphertext

(ā, b̄) ∈ R2
q encrypting m0 ·m1

Usually, we also perform modulus switching



50/62

Recapitulation

Now we know how to construct a homomorphic scheme whose

I ciphertexts are compact (relinearization)

I noise grows slowly (modulus switching)

This is the base of schemes like BGV, CKKS, FV...

But we are encrypting polynomials...
Applications usually work with integers...
So, the final optimization: batching, aka SIMD, aka plaintext slots



50/62

Recapitulation

Now we know how to construct a homomorphic scheme whose

I ciphertexts are compact (relinearization)

I noise grows slowly (modulus switching)

This is the base of schemes like BGV, CKKS, FV...

But we are encrypting polynomials...
Applications usually work with integers...
So, the final optimization: batching, aka SIMD, aka plaintext slots



51/62

Plaintext slots

Plaintext space of RLWE-based schemes: Rt = Zt [X ]/〈XN + 1〉

But most applications do not use polynomials as the data type...

We can use the decomposition of XN + 1 modulo t to represent
the plaintext space in a more application-friendly way



52/62

Plaintext slots

For example,

X 4 + 1 = (X + 2)(X + 8)(X + 9)(X + 15) mod 17

Thus,

R17 =
Zt [X ]

〈X + 2〉
× Zt [X ]

〈X + 8〉
× Zt [X ]

〈X + 9〉
× Zt [X ]

〈X + 15〉
= Z4

t

So, instead of encrypting one “big” polynomial, we can encrypt 4
degree-0 polynomials (i.e., elements of Zt)



53/62

Plaintext slots

In general, XN + 1 factors into S lower degree polynomials mod t

XN + 1 =
S∏

i=1

fi (X ) mod t

and we have S slots, i.e., we can encrypt a vector (v1, ..., vS) ∈ ZS
t

Then, homomorphic operations are applied to the slots in parallel:

Let ~cu = Enc(u1, ..., uS) and ~cv = Enc(v1, ..., vS)

I HE.Add(~cu, ~cv ) = Enc(u1 + v1, ..., uS + vS)

I HE.Mult(~cu, ~cv , rlk) = Enc(u1 · v1, ..., uS · vS)



54/62

Plaintext slots

In summary, with S slots, we can process S messages in parallel.

We call it SIMD (single instruction multiple data).

Evaluating f homomorphically one single time yields

Enc(f (u1), ..., f (uS))

Hence, the amortized running time is divided by S



54/62

Plaintext slots

In summary, with S slots, we can process S messages in parallel.

We call it SIMD (single instruction multiple data).

Evaluating f homomorphically one single time yields

Enc(f (u1), ..., f (uS))

Hence, the amortized running time is divided by S



55/62

Plaintext slots: rotations

On some applications, we need to combine values in different slots.

FHE schemes typically also offer slot rotation:

Given an integer k and a key-switching key swkk

HE.Rot(Enc(u1, ..., uS), k , swkk)

applies a shift rotation to (u1, ..., uS) by k positions

For example:

HE.Rot(Enc(u1, u2, ..., uS), 1, swk1) = Enc(u2, u3, ..., uS , u1)

HE.Rot(Enc(u1, u2, ..., uS), 2, swk2) = Enc(u3, u4, ..., u1, u2)



55/62

Plaintext slots: rotations

On some applications, we need to combine values in different slots.

FHE schemes typically also offer slot rotation:

Given an integer k and a key-switching key swkk

HE.Rot(Enc(u1, ..., uS), k , swkk)

applies a shift rotation to (u1, ..., uS) by k positions

For example:

HE.Rot(Enc(u1, u2, ..., uS), 1, swk1) = Enc(u2, u3, ..., uS , u1)

HE.Rot(Enc(u1, u2, ..., uS), 2, swk2) = Enc(u3, u4, ..., u1, u2)



55/62

Plaintext slots: rotations

On some applications, we need to combine values in different slots.

FHE schemes typically also offer slot rotation:

Given an integer k and a key-switching key swkk

HE.Rot(Enc(u1, ..., uS), k , swkk)

applies a shift rotation to (u1, ..., uS) by k positions

For example:

HE.Rot(Enc(u1, u2, ..., uS), 1, swk1) = Enc(u2, u3, ..., uS , u1)

HE.Rot(Enc(u1, u2, ..., uS), 2, swk2) = Enc(u3, u4, ..., u1, u2)



56/62

Plaintext slots: rotations

We have to plan ahead the rotations we want to execute

During the setup, we generate one (public) key-switching key swkk
for each k-wise rotation we need

Cost of homomorphic rotation:

I Run time: approximately same as HE.Mult

I Memory: each swkk typically has around 30MB

I Noise: much less than HE.Mult



57/62

Example: computing inner product

I We want to compute ~u · ~v =
∑4

i=1 ui · vi
I Set at least 4 slots

I Start with ciphertexts Enc(u1, ..., u4) and Enc(v1, ..., v4)

I Then HE.Mult gives us Enc(w1, ...,w4) where wi = ui · vi
I Rotate by 1 to get Enc(w2,w3,w4,w1)

I Then HE.Add: Enc(w1 + w2,w2 + w3,w3 + w4,w4 + w1)

I Rotate by 2: Enc(w3 + w4,w4 + w1,w1 + w2,w2 + w3)

I Finally HE.Add: Enc(~u · ~v , ~u · ~v , ~u · ~v , ~u · ~v)

I This costs 1 HE.Mult and 2 HE.Rot.



58/62

Table of Contents

High-level intro to FHE

Hard problems used to build FHE

Constructing FHE with RLWE

State-of-the-art FHE schemes



59/62

General approach to use FHE

I Identify the functions you want to compute
I Set parameters large enough to support those functions (or to

support bootstrapping)
I More complicated functions imply more noise, which implies

larger parameters
I Most libraries already have predefined sets of parameters

I Generate secret, public, relinearization and key-switching keys

I Send the server the encrypted data and the keys (except sk)

I The server will evaluate the functions using the available
operations (e.g., HE.Mult, HE.Rot and bootstrapping)



60/62

Main schemes

Scheme Data type Slots Bootstrapping Key material

BGV/FV ZS
t for large t Yes Expensive GB

CKKS RS Yes Expensive GB
TFHE/concrete Zt for small t No Cheap MB
FINAL Z2 No Cheapest MB

Of course, CKKS just supports “real numbers” up to some precision (say, 30 or 60

bits). Moreover, the homomorphic operations reduce the precision, so, output has

much less precision than input.



61/62

Some libraries

Schemes User-friendly Language

HElib BGV, CKKS* No C++
OpenFHE BGV*, FV*, CKKS, TFHE Medium C++
Lattigo BGV*, FV*, CKKS Yes Go
SEAL FV*, CKKS* Yes C++
concrete (extended) TFHE Yes Rust
FINAL FINAL Yes C++

Asterisk means that the scheme is implemented but without bootstrapping.



62/62

Thanks!

Any question or comment?
Please, feel free to contact!

https://hilder-vitor.github.io

https://hilder-vitor.github.io

	High-level intro to FHE
	Hard problems used to build FHE
	Constructing FHE with RLWE
	State-of-the-art FHE schemes

