
Financial Applications for Multiparty Computation

Younes Talibi Alaoui

02 March 2023

1 / 53



Outline

• Introduction
• Multiparty Computation (MPC)
• MPC for interbank payments
• MPC for fraud detection

2 / 53



Introduction

Cryptography in finance:
• Withdrawing money, Online banking, Financial institutions securing data,

Crypto-currencies, etc.

Cryptographic primitives traditionally used:
• Encryption, Signature schemes, Hash functions

Financial world keeps emerging
• New technologies are being considered/integrated, e.g., ZKP, HE, and MPC

3 / 53



Introduction

Cryptography in finance:
• Withdrawing money, Online banking, Financial institutions securing data,

Crypto-currencies, etc.

Cryptographic primitives traditionally used:
• Encryption, Signature schemes, Hash functions

Financial world keeps emerging
• New technologies are being considered/integrated, e.g., ZKP, HE, and MPC

3 / 53



Introduction

Cryptography in finance:
• Withdrawing money, Online banking, Financial institutions securing data,

Crypto-currencies, etc.

Cryptographic primitives traditionally used:
• Encryption, Signature schemes, Hash functions

Financial world keeps emerging
• New technologies are being considered/integrated, e.g., ZKP, HE, and MPC

3 / 53



Introduction – MPC for finance

• Financial Statistics
– Evaluating metrics in industry1

– Correlations between work during studies and education records2

1Bogdanov et al. Deploying secure multi-party computation for financial data analysis
2Bogdanov et al. Students and taxes: a privacy-preserving study using secure computation

4 / 53



Introduction – MPC for finance

• Financial Statistics
– Evaluating metrics in industry1

– Correlations between work during studies and education records2

1Bogdanov et al. Deploying secure multi-party computation for financial data analysis
2Bogdanov et al. Students and taxes: a privacy-preserving study using secure computation

4 / 53



Introduction – MPC for finance

• Fraud detection
– ML based. E.g., Federated Learning for fraud detection3

– Tax fraud detection4

– Pagerank for Fraud Detection 5 6

3Byrd et al. Differentially private secure multi-party computation for federated learning in financial
applications.

4Bogdanov et al. Privacy-preserving tax fraud detection in the cloud with realistic data volumes.
5Sangers et al. Secure multiparty Pagerank algorithm for collaborative fraud detection.
6Cozzo et al. Secure fast evaluation of iterative methods: With an application to secure Pagerank.

5 / 53



Introduction – MPC for finance

• Fraud detection
– ML based. E.g., Federated Learning for fraud detection3

– Tax fraud detection4

– Pagerank for Fraud Detection 5 6

3Byrd et al. Differentially private secure multi-party computation for federated learning in financial
applications.

4Bogdanov et al. Privacy-preserving tax fraud detection in the cloud with realistic data volumes.
5Sangers et al. Secure multiparty Pagerank algorithm for collaborative fraud detection.
6Cozzo et al. Secure fast evaluation of iterative methods: With an application to secure Pagerank.

5 / 53



Introduction – MPC for finance

• Fraud detection
– ML based. E.g., Federated Learning for fraud detection3

– Tax fraud detection4

– Pagerank for Fraud Detection 5 6

3Byrd et al. Differentially private secure multi-party computation for federated learning in financial
applications.

4Bogdanov et al. Privacy-preserving tax fraud detection in the cloud with realistic data volumes.
5Sangers et al. Secure multiparty Pagerank algorithm for collaborative fraud detection.
6Cozzo et al. Secure fast evaluation of iterative methods: With an application to secure Pagerank.

5 / 53



Introduction – MPC for finance

• Assessing financial risk
– Graph analytics for calculating risk7

• Auctions
– Sugar Beet Auction 8

– Inventory Matching 9

– Dark Pools10

7Hastings et al. Privacy-preserving network analytics
8Bogetoft et al. Secure multiparty computation goes live
9Balch et al. Secretmatch: inventory matching from fully homomorphic encryption

10Cartlidge et al. MPC Joins The Dark Side
6 / 53



Introduction – MPC for finance

• Assessing financial risk
– Graph analytics for calculating risk7

• Auctions
– Sugar Beet Auction 8

– Inventory Matching 9

– Dark Pools10

7Hastings et al. Privacy-preserving network analytics
8Bogetoft et al. Secure multiparty computation goes live
9Balch et al. Secretmatch: inventory matching from fully homomorphic encryption

10Cartlidge et al. MPC Joins The Dark Side
6 / 53



Introduction – MPC for finance

• Assessing financial risk
– Graph analytics for calculating risk7

• Auctions
– Sugar Beet Auction 8

– Inventory Matching 9

– Dark Pools10

7Hastings et al. Privacy-preserving network analytics
8Bogetoft et al. Secure multiparty computation goes live
9Balch et al. Secretmatch: inventory matching from fully homomorphic encryption

10Cartlidge et al. MPC Joins The Dark Side
6 / 53



Introduction – MPC for finance

• Assessing financial risk
– Graph analytics for calculating risk7

• Auctions
– Sugar Beet Auction 8

– Inventory Matching 9

– Dark Pools10

7Hastings et al. Privacy-preserving network analytics
8Bogetoft et al. Secure multiparty computation goes live
9Balch et al. Secretmatch: inventory matching from fully homomorphic encryption

10Cartlidge et al. MPC Joins The Dark Side
6 / 53



Introduction – MPC for finance

• Blockchain related applications
– Securing Cryptographic Keys 11

– Generating CRS 12

– Liquidity matching 13

11Lindell. Fast Secure Two-Party ECDSA Signing
12Bowe et al. A multi-party protocol for constructing the public parameters of the Pinocchio

zk-SNARK
13Atapoor et al. Private Liquidity Matching using MPC

7 / 53



Introduction – MPC for finance

• Blockchain related applications
– Securing Cryptographic Keys 11

– Generating CRS 12

– Liquidity matching 13

11Lindell. Fast Secure Two-Party ECDSA Signing
12Bowe et al. A multi-party protocol for constructing the public parameters of the Pinocchio

zk-SNARK
13Atapoor et al. Private Liquidity Matching using MPC

7 / 53



Introduction – MPC for finance

• Blockchain related applications
– Securing Cryptographic Keys 11

– Generating CRS 12

– Liquidity matching 13

11Lindell. Fast Secure Two-Party ECDSA Signing
12Bowe et al. A multi-party protocol for constructing the public parameters of the Pinocchio

zk-SNARK
13Atapoor et al. Private Liquidity Matching using MPC

7 / 53



MPC

MPC allows a set of parties to perform
computation on their inputs while keeping
them private.

One family of MPC is based on Secret
Sharing.

We denote a secret x shared between the parties as 〈x〉

8 / 53



MPC

MPC allows a set of parties to perform
computation on their inputs while keeping
them private.

One family of MPC is based on Secret
Sharing.

We denote a secret x shared between the parties as 〈x〉

8 / 53



MPC

MPC comes with many flavors:
• Type of adversary: Passive or Active
• Number of corruptions: Honest Majority, Dishonest Majority
• Properties to guarantee: Correctness, Robustness, Privacy, etc.

Note that there is a tradeoff between "security" and efficiency.

9 / 53



MPC

MPC comes with many flavors:
• Type of adversary: Passive or Active
• Number of corruptions: Honest Majority, Dishonest Majority
• Properties to guarantee: Correctness, Robustness, Privacy, etc.

Note that there is a tradeoff between "security" and efficiency.

9 / 53



MPC – Distributing an application

If statements:
For a value x , and functions f ,g, an If statement on plaintext data would be
something similar to this:

(1) If x > 0
(I) r ← f (x)

(2) Else
(I) r ← g(x)

10 / 53



MPC – Distributing an application

If statements:
With MPC, doing something similar will leak information.
• One needs to evaluate both branches.
• Same applies for loops, the stopping condition should not depend on a secret.

11 / 53



MPC – Distributing an application

Accessing data:
For an array A, accessing the element with index i on plaintext data would be like
this:

(1) r ← A[i]

With MPC, doing something similar if the index is secret shared will leak
information
(1) One needs to touch every element of the array
(2) One can use an advanced form of storing data, i.e., Oblivious RAM.

12 / 53



MPC – Distributing an application

Accessing data:
For an array A, accessing the element with index i on plaintext data would be like
this:

(1) r ← A[i]

With MPC, doing something similar if the index is secret shared will leak
information
(1) One needs to touch every element of the array
(2) One can use an advanced form of storing data, i.e., Oblivious RAM.

12 / 53



MPC – Distributing an application

Accessing data:
For an array A, accessing the element with index i on plaintext data would be like
this:

(1) r ← A[i]

With MPC, doing something similar if the index is secret shared will leak
information
(1) One needs to touch every element of the array
(2) One can use an advanced form of storing data, i.e., Oblivious RAM.

12 / 53



MPC – Distributing an application

Representing data:
MPC is defined over some algebraic construction, e.g. a field
• Permits to do additions and multiplications.

In real life we want to do more than this:
• For instance, operate over fixed points and floating points etc.
• Perform comparisons, division, trigonometric functions etc.

In practice
• One needs to emulate the functions to calculate through additions

multiplications, and opening values.
• Many protocols exist, offering tradeoffs between computation, communication,

"security", precision of the result.

13 / 53



MPC – Distributing an application

Representing data:
MPC is defined over some algebraic construction, e.g. a field
• Permits to do additions and multiplications.

In real life we want to do more than this:
• For instance, operate over fixed points and floating points etc.
• Perform comparisons, division, trigonometric functions etc.

In practice
• One needs to emulate the functions to calculate through additions

multiplications, and opening values.
• Many protocols exist, offering tradeoffs between computation, communication,

"security", precision of the result.

13 / 53



MPC – Distributing an application

Representing data:
MPC is defined over some algebraic construction, e.g. a field
• Permits to do additions and multiplications.

In real life we want to do more than this:
• For instance, operate over fixed points and floating points etc.
• Perform comparisons, division, trigonometric functions etc.

In practice
• One needs to emulate the functions to calculate through additions

multiplications, and opening values.
• Many protocols exist, offering tradeoffs between computation, communication,

"security", precision of the result.

13 / 53



MPC – Distributing an application

Frameworks:
A framework implements
• Basic subroutines.
• Advanced subroutines, e.g., the ones commonly used for ML algorithm.

Example of frameworks:
• ABY14, Sharemind 15, MP-SPDZ16, Scale-Mamba 17

14Demmler et al. ABY - a framework for efficient mixed-protocol secure two-party computation
15Bogdanov et al. Sharemind: A framework for fast privacy-preserving computations
16Keller. MP-SPDZ: A versatile framework for multi-partycomputation.
17https://homes.esat.kuleuven.be/~nsmart/SCALE/

14 / 53



MPC – Distributing an application

Frameworks:
A framework implements
• Basic subroutines.
• Advanced subroutines, e.g., the ones commonly used for ML algorithm.

Example of frameworks:
• ABY14, Sharemind 15, MP-SPDZ16, Scale-Mamba 17

14Demmler et al. ABY - a framework for efficient mixed-protocol secure two-party computation
15Bogdanov et al. Sharemind: A framework for fast privacy-preserving computations
16Keller. MP-SPDZ: A versatile framework for multi-partycomputation.
17https://homes.esat.kuleuven.be/~nsmart/SCALE/

14 / 53



MPC – Distributing an application

The MPC we used had the following properties:
• Active security with abort
• Varied the number of corrupt parties

– Honest majority and all parties but one can be corrupt
– Shamir secret sharing based MPC and SPDZ

• MPC in the Pre-processing model
– Generation of triples and bits in the offline phase

15 / 53



MPC – Distributing an application

The MPC we used had the following properties:
• Active security with abort
• Varied the number of corrupt parties

– Honest majority and all parties but one can be corrupt
– Shamir secret sharing based MPC and SPDZ

• MPC in the Pre-processing model
– Generation of triples and bits in the offline phase

15 / 53



MPC – Distributing an application

The MPC we used had the following properties:
• Active security with abort
• Varied the number of corrupt parties

– Honest majority and all parties but one can be corrupt
– Shamir secret sharing based MPC and SPDZ

• MPC in the Pre-processing model
– Generation of triples and bits in the offline phase

15 / 53



MPC – Distributing an application

Framework we used: Scale-Mamba

Costs of operations

Operation 〈a〉+ 〈b〉 〈a〉 · 〈b〉 〈a〉 < 〈b〉 Open
Triples 0 1 120 0

Bits 0 0 105 0
Rnds of Comm. 0 1 7 1

16 / 53



MPC for Interbank Payments

Shahla Atapoor, Nigel P. Smart, and Younes Talibi Alaoui. Private Liquidity
Matching using MPC.

17 / 53



MPC for Interbank Payments

Today’s economy heavily relies on the flow of funds.

18 / 53



MPC for Interbank Payments
Real Time Gross Settlement (RTGS):

19 / 53



MPC for Interbank Payments

RTGS systems are widely adopted.
• Most countries have their own RTGS

RTGS systems VS. Net Settlement Systems:
• RTGS systems reduce the risks associated with high-value payment

settlements
• However, require banks to provide more liquidity
• Because of this, participants might be exposed to Gridlocks

20 / 53



MPC for Interbank Payments

RTGS systems are widely adopted.
• Most countries have their own RTGS

RTGS systems VS. Net Settlement Systems:
• RTGS systems reduce the risks associated with high-value payment

settlements
• However, require banks to provide more liquidity
• Because of this, participants might be exposed to Gridlocks

20 / 53



MPC for Interbank Payments

RTGS systems are widely adopted.
• Most countries have their own RTGS

RTGS systems VS. Net Settlement Systems:
• RTGS systems reduce the risks associated with high-value payment

settlements
• However, require banks to provide more liquidity
• Because of this, participants might be exposed to Gridlocks

20 / 53



MPC for Interbank Payments

RTGS systems are widely adopted.
• Most countries have their own RTGS

RTGS systems VS. Net Settlement Systems:
• RTGS systems reduce the risks associated with high-value payment

settlements
• However, require banks to provide more liquidity
• Because of this, participants might be exposed to Gridlocks

20 / 53



MPC for Interbank Payments

No Gridlock: All the banks hold sufficient funds.

21 / 53



MPC for Interbank Payments

Gridlock: Some of the banks do not hold sufficient funds.

22 / 53



MPC for Interbank Payments

Deadlock: Some of the banks do not hold sufficient funds, and even a multilateral
netting will not result in positive net balances for all banks

23 / 53



MPC for Interbank Payments

GridLock Resolution’s Problem (GRP)
• A discrete optimization problem
• Aims to maximize the number of transactions to be settled

If the transactions are appended with a strict ordering of execution
• The optimal solution can be found in polynomial time.

24 / 53



MPC for Interbank Payments

Algorithm to solve GRP
(1) Include all queued payments in the solution.
(2) Calculate balances for all the banks

(I) If there is at least one negative balance then execute step 3.
(II) If all the balances are positive then stop

(3) Remove the last transaction in the queue for the banks with a negative
balance. Repeat step 2.

25 / 53



MPC for Interbank Payments

Algorithm to solve GRP
(1) Include all queued payments in the solution.
(2) Calculate balances for all the banks

(I) If there is at least one negative balance then execute step 3.
(II) If all the balances are positive then stop

(3) Remove the last transaction in the queue for the banks with a negative
balance. Repeat step 2.

25 / 53



MPC for Interbank Payments

Algorithm to solve GRP
(1) Include all queued payments in the solution.
(2) Calculate balances for all the banks

(I) If there is at least one negative balance then execute step 3.
(II) If all the balances are positive then stop

(3) Remove the last transaction in the queue for the banks with a negative
balance. Repeat step 2.

25 / 53



MPC for Interbank Payments

When a gridlock occurs, the central bank intervenes.
• As it can see all what is happening.

Solving gridlocks becomes problematic in a decentralized setting:
• E.g., through a blockchain

26 / 53



MPC for Interbank Payments

When a gridlock occurs, the central bank intervenes.
• As it can see all what is happening.

Solving gridlocks becomes problematic in a decentralized setting:
• E.g., through a blockchain

26 / 53



MPC for Interbank Payments

We provided a protocol to do Private Liquidity Matching in MPC.
• A set of parties will maintain the balances in secret shared form of participants
• These parties will receive transactions’ data in secret shared form, so as to

update balances and solve gridlocks when they happen
• Varied privacy guarantees regarding transaction data: Sender, Receiver, and

Amount

27 / 53



MPC for Interbank Payments

We provided a protocol to do Private Liquidity Matching in MPC.
• A set of parties will maintain the balances in secret shared form of participants
• These parties will receive transactions’ data in secret shared form, so as to

update balances and solve gridlocks when they happen
• Varied privacy guarantees regarding transaction data: Sender, Receiver, and

Amount

27 / 53



MPC for Interbank Payments

We provided a protocol to do Private Liquidity Matching in MPC.
• A set of parties will maintain the balances in secret shared form of participants
• These parties will receive transactions’ data in secret shared form, so as to

update balances and solve gridlocks when they happen
• Varied privacy guarantees regarding transaction data: Sender, Receiver, and

Amount

27 / 53



MPC for Interbank Payments

We provided three versions of the protocol:
• Source and destination open
• Source open and destination secret
• Source and destination secret

Balances and amounts are secrets in all versions.

28 / 53



MPC for Interbank Payments

We provided three versions of the protocol:
• Source and destination open
• Source open and destination secret
• Source and destination secret

Balances and amounts are secrets in all versions.

28 / 53



MPC for Interbank Payments

Let :
• t = (s,a, r) denote a transaction
• Bi denote the balance of participant i
• U denote the set of transactions in the current queue.

29 / 53



MPC for Interbank Payments

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

Let 〈xt〉 denote a variable which indicates whether a trans-
actions t in the queue should be included.
• Initially 〈xt〉 = 1 for all transactions in the queue.

30 / 53



MPC for Interbank Payments

Source and Destination open

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

(1) For all i in [1, ..,n] do
(I) 〈Si〉 ← Σ〈a〉 · 〈xt〉 where the sum is over all trans-

actions t = (s, 〈a〉, r) with source i .
(II) 〈Ri〉 ← Σ〈a〉 · 〈xt〉 where the sum is over all trans-

actions t = (s, 〈a〉, r) with source i .
(III) 〈BU

i 〉 = 〈Bi〉 − 〈Si〉+ 〈Ri〉.

31 / 53



MPC for Interbank Payments

Source open and Destination secret
Using a naive ORAM implementation, we Demux the index i via a Demux array
〈Ct ,i〉, where t is a transaction and i is the index for the destination.

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

(1) For i in [1, ..,n] do
(I) 〈Si〉 ← Σ〈a〉 · 〈xt〉 where the sum is over all trans-

actions t = (s, 〈a〉, 〈r〉) with source i .
(II) 〈Ri〉 ← Σ〈a〉 · 〈xt〉 · 〈Ct ,i〉 where the sum is over all

transactions t = (s, 〈a〉, 〈r〉) with source i .
(III) 〈BU

i 〉 = 〈Bi〉 − 〈Si〉+ 〈Ri〉.

32 / 53



MPC for Interbank Payments

Source open and Destination secret
Using a naive ORAM implementation, we Demux the index i via a Demux array
〈Ct ,i〉, where t is a transaction and i is the index for the destination.

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

(1) For i in [1, ..,n] do
(I) 〈Si〉 ← Σ〈a〉 · 〈xt〉 where the sum is over all trans-

actions t = (s, 〈a〉, 〈r〉) with source i .
(II) 〈Ri〉 ← Σ〈a〉 · 〈xt〉 · 〈Ct ,i〉 where the sum is over all

transactions t = (s, 〈a〉, 〈r〉) with source i .
(III) 〈BU

i 〉 = 〈Bi〉 − 〈Si〉+ 〈Ri〉.

32 / 53



MPC for Interbank Payments

Source and Destination secret
Use another Demux array 〈Wt ,i〉, where t is a transaction and i is the index for the
source.

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

(1) For i in [1, ..,n] do
(I) 〈Si〉 ← Σ〈a〉 · 〈xt〉 · 〈Wt ,i〉 where the sum is over

all transactions t = (〈s〉, 〈a〉, 〈r〉) with source i .
(II) 〈Ri〉 ← Σ〈a〉 · 〈xt〉 · 〈Ct ,i〉 where the sum is over all

transactions t = (〈s〉, 〈a〉, 〈r〉) with source i .
(III) 〈BU

i 〉 = 〈Bi〉 − 〈Si〉+ 〈Ri〉.

33 / 53



MPC for Interbank Payments

Source and Destination secret
Use another Demux array 〈Wt ,i〉, where t is a transaction and i is the index for the
source.

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

(1) For i in [1, ..,n] do
(I) 〈Si〉 ← Σ〈a〉 · 〈xt〉 · 〈Wt ,i〉 where the sum is over

all transactions t = (〈s〉, 〈a〉, 〈r〉) with source i .
(II) 〈Ri〉 ← Σ〈a〉 · 〈xt〉 · 〈Ct ,i〉 where the sum is over all

transactions t = (〈s〉, 〈a〉, 〈r〉) with source i .
(III) 〈BU

i 〉 = 〈Bi〉 − 〈Si〉+ 〈Ri〉.

33 / 53



MPC for Interbank Payments

Source open

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop.

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

(1) For i in [1, ..,n] do
(I) 〈hi〉 ← 〈BU

i 〉 < 0.
(2) 〈z〉 ← Π(1− 〈hi〉)
(3) Open z
(4) If z = 1 it means all the balances are positive and we

already solved the problem.
(5) Else, it means that there is at least one negative bal-

ance and we should jump into step 3

34 / 53



MPC for Interbank Payments

Source open

Algorithm to solve GRP

(1) Include all queued payments in
the solution.

(2) Calculate balances for all the
banks
(I) If there is at least one negative
balance then execute step 3.
(II) If all the balances are positive
then stop.

(3) Remove the last transaction in
the queue for the banks with a neg-
ative balance. Repeat step 2.

Let v be the size of the queue U
(1) For i in [1, .., v − 1] do

(I) 〈xi〉 ← (〈xi〉 · 〈xi+1〉) · 〈hi〉+ 〈xi〉 · (1− 〈hi〉).
(2) 〈xv 〉 ← 〈xv 〉 · (1− 〈hv 〉)

35 / 53



MPC for Interbank Payments
Runtimes in second. n is the number of banks, and m is the number of
transactions to be processed.

Source and destination open (left) and source open and destination secret
(right).

36 / 53



MPC for Interbank Payments
Runtimes in second. n is the number of banks, and m is the number of
transactions to be processed.

Source and destination secret.

37 / 53



MPC for Interbank Payments
The previous performance results correspond to executing the algorithm only
once.
• In practice we care about clearing the results over a day of execution.
• The value m will vary during the day, depending on the participants, amounts,

and liquidity in the system.

We simulated transactions being exchanged within an interval of time
• We simulated transactions following the methodology given by Soramäki and

Cook in 2013 18

To simulate we need to define how much liquidity is in the system. This is
controlled by a simulation parameter β ∈ [0,1].
• β = 1 means all the transactions can be cleared instantly
• β = 0 means all the transactions can be cleared by the end of the time window

18Soramaki et al. Sinkrank: An algorithm for identifying systemically important banks in payment
systems.

38 / 53



MPC for Interbank Payments
The previous performance results correspond to executing the algorithm only
once.
• In practice we care about clearing the results over a day of execution.
• The value m will vary during the day, depending on the participants, amounts,

and liquidity in the system.

We simulated transactions being exchanged within an interval of time
• We simulated transactions following the methodology given by Soramäki and

Cook in 2013 18

To simulate we need to define how much liquidity is in the system. This is
controlled by a simulation parameter β ∈ [0,1].
• β = 1 means all the transactions can be cleared instantly
• β = 0 means all the transactions can be cleared by the end of the time window

18Soramaki et al. Sinkrank: An algorithm for identifying systemically important banks in payment
systems.

38 / 53



MPC for Interbank Payments
The previous performance results correspond to executing the algorithm only
once.
• In practice we care about clearing the results over a day of execution.
• The value m will vary during the day, depending on the participants, amounts,

and liquidity in the system.

We simulated transactions being exchanged within an interval of time
• We simulated transactions following the methodology given by Soramäki and

Cook in 2013 18

To simulate we need to define how much liquidity is in the system. This is
controlled by a simulation parameter β ∈ [0,1].
• β = 1 means all the transactions can be cleared instantly
• β = 0 means all the transactions can be cleared by the end of the time window

18Soramaki et al. Sinkrank: An algorithm for identifying systemically important banks in payment
systems.

38 / 53



MPC for Interbank Payments
First generate transactions using the distribution of the simulator.
• Distribute them over one hour at uniform time intervals.

Clear them using our algorithms using 2 versions:
• Take the transactions one by one.
• Whenever we take transactions, we enter all the ones that arrived whilst we

were executing the previous GRP step.

At the end of the processing of the hour we calculate:
• The Excess E : the time needed to clear all transactions minus one hour.

– E = 0 is perfect. The MPC variant results in no delay.
• The Delay D: the average delay in terms of executed time vs entered time for

each transaction.
– D = 0 is perfect. There is no delay for any transaction.

39 / 53



MPC for Interbank Payments
First generate transactions using the distribution of the simulator.
• Distribute them over one hour at uniform time intervals.

Clear them using our algorithms using 2 versions:
• Take the transactions one by one.
• Whenever we take transactions, we enter all the ones that arrived whilst we

were executing the previous GRP step.

At the end of the processing of the hour we calculate:
• The Excess E : the time needed to clear all transactions minus one hour.

– E = 0 is perfect. The MPC variant results in no delay.
• The Delay D: the average delay in terms of executed time vs entered time for

each transaction.
– D = 0 is perfect. There is no delay for any transaction.

39 / 53



MPC for Interbank Payments
First generate transactions using the distribution of the simulator.
• Distribute them over one hour at uniform time intervals.

Clear them using our algorithms using 2 versions:
• Take the transactions one by one.
• Whenever we take transactions, we enter all the ones that arrived whilst we

were executing the previous GRP step.

At the end of the processing of the hour we calculate:
• The Excess E : the time needed to clear all transactions minus one hour.

– E = 0 is perfect. The MPC variant results in no delay.
• The Delay D: the average delay in terms of executed time vs entered time for

each transaction.
– D = 0 is perfect. There is no delay for any transaction.

39 / 53



MPC for Interbank Payments
Runtimes in seconds corresponding to 1 hour of an RTGS, where the transactions
are coming from simulation. n shows the number of banks, M shows the total
number of transactions, and a value β controlling the amount of liquidity in the
system. E and D given to 0 decimal places accuracy.

Runtimes for source and destination open

40 / 53



MPC for Interbank Payments
Runtimes in seconds corresponding to 1 hour of an RTGS, where the transactions
are coming from simulation. n shows the number of banks, M shows the total
number of transactions, and a value β controlling the amount of liquidity in the
system. E and D given to 0 decimal places accuracy.

Runtimes for source open and destination secret

41 / 53



MPC for Interbank Payments
Runtimes in seconds corresponding to 1 hour of an RTGS, where the transactions
are coming from simulation. n shows the number of banks, M shows the total
number of transactions, and a value β controlling the amount of liquidity in the
system. E and D given to 0 decimal places accuracy.

Runtimes for source and destination secret

42 / 53



MPC for Interbank Payments

Takeaway from the experiments:
• Hiding all transaction data is impractical for large networks.
• Relaxing this (e.g. Senders of transactions revealed) allows us to meet real

world requirements

43 / 53



MPC for Fraud Detection

D. Cozzo, N. P. Smart, and Y. Talibi Alaoui. Secure Fast Evaluation of Iterative
Methods: With an Application to Secure PageRank.

44 / 53



MPC for Fraud Detection

Financial institutions utilize different tools to detect fraud:
• Based on ML
• Graph analysis

Collect data from interbank transactions
• Form corresponding graph
• Execute the PageRank algorithm on the graph

45 / 53



MPC for Fraud Detection

Financial institutions utilize different tools to detect fraud:
• Based on ML
• Graph analysis

Collect data from interbank transactions
• Form corresponding graph
• Execute the PageRank algorithm on the graph

45 / 53



MPC for Fraud Detection

PageRank initially conceived in order to measure the "importance" of webpages.

• The output of PageRank can be used as a feature vector in other ML
algorithms

46 / 53



MPC for Fraud Detection

47 / 53



MPC for Fraud Detection

48 / 53



MPC for Fraud Detection

49 / 53



MPC for Fraud Detection

50 / 53



MPC for Fraud Detection

We showed how to do PageRank in MPC.
• For a network of size 10000, the online phase takes around 45min between 3

MPC parties

We particularly showed that testing the stopping condition in the power method
does not leak significant information.
• Which allowed us to run the power method with a stopping condition, as

opposed to run it a constant number of times

51 / 53



Conclusion

MPC is useful to solve real world usecases:
• Solve a problem encountered when decentralizing interbank payments
• Allow financial institutions to improve their fraud detection process

52 / 53



Conclusion

MPC is useful to solve real world usecases:
• Solve a problem encountered when decentralizing interbank payments
• Allow financial institutions to improve their fraud detection process

52 / 53



Thanks, Questions

53 / 53


