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Applications of FHE
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Outsourced Computation

Outsourced computation where a server does requested computation over
encrypted data given from a client is a well known scenario for applications
of FHE.
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Privacy preserving protocols based on FHE

There are advantages and disadvantages of privacy preserving protocols
based on FHE:

Single server scenario is possible
asymptotically optimal communication/computation complexity is
achievable
non-interactive protocol is possible
communication cost is high compared to other methods (like MPC)
computation cost is very high!

We study few examples of such protocols especially focusing on how to solve
the aforementioned negative points.
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Threat model

Can we trust the computing party (cloud) (owned by companies) ? If so,
how much should we trust him ?

Semi-honest party : who follows a protocol honestly albeit it wants to
know other parties’ inputs.

▶ But it cannot deviate from the protocol ( changing the inputs and
outputs, aborting the protocol, etc.)

The security of FHE (IND-CPA) guarantees the client’s security against
semi-honest party (server)!
Therefore, client’s input data (can be confidential) can be securely
preserved during computation with FHE if server is semi-honest.
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Private Information Retrieval
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Private Information Retrieval
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Two basic types of PIR

Information-Theoretic PIR(IT-PIR)
+ : Server’s computation cost is relatively inexpensive(an XOR for each

entry) & Information-theoretic privacy.
- : non-collusion assumption between servers are required!

(Chor et al. : transferring the entire database to the user has optimal
communication complexity for IT-PIR with a single server.)

Computational PIR (cPIR)
+ : can be used with a single server under cryptographic hardness

assumption & lower communication cost.
- : more computational cost

We focus on cPIR based on homomorphic encryption schemes.
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FHE based PIR protocols 1) XPIR1

Naive approach:

Too large network cost

1XPIR : Private Information Retrieval for Everyone
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FHE based PIR protocols 1) XPIR

They use Stern’s way to represent the query using d d
√
n ciphertexts

structuring DB as a d-dimensional hypercube to improve network cost.

J.Park (COSIC) Applications of FHE ISCwsISC 11 / 77



FHE based PIR protocols 2) SEAL-PIR2

2PIR with compressed queries and amortized query processing
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Server’s reply
In order to avoid BFV’s expensive (large noise growth, high computation
cost) operation (multiplication over ciphertexts), both protocols use a
multiplication between plaintext and ciphertext.

It results in larger response of server with the cryptosystem’s expansion
factor(F )=|ciphertext|/|plaintext| ≥ 4:

Therefore, a client receives answers with F d−1 ciphertexts.
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FHE based cPIR protocols 3) SHECS-PIR3

1) Query generation:
Choose an index i ∈ {1, . . . , n}
Binarize the index : i =

∑log n−1
j=0 ϵj2j for ϵj ∈ {0, 1}.

Encrypt each ϵj ∈ {0, 1} for j ∈ {0, . . . , log n − 1}
Send these ciphertexts to a server as a query.

3SHECS-PIR: Somewhat Homomorphic Encryption-Based Compact and Scalable
Private Information Retrieval
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2) Server’s computation:
Structure n data elements as a look up table (LUT) below.
Run n − 1 times homomorphic mux gate (called Cmux in TFHE) to
select the desired ciphertext with the LUT and a binary tree (described
below)
Give the result to the client.

Figure 1 & Table 1: The Cmux binary decision tree (left figure) and Look Up
Table (right table)

ϵs−1 . . . ϵ0 Data
0 . . . 0 x0
0 . . . 1 x1
...

...
...

...
1 . . . 1 xn−1
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Optimization for Query

We reduce the size of query by packing query technique:
Binarize the index i as

∑s
j=0 ϵj2

j , where ϵj ∈ {0, 1}, s = log n − 1.

Set a plaintext polynomial ϵ0 + ϵ1X + ϵ2X
2 + · · ·+ ϵsX

s .
Encrypt the polynomial.

Instead of encrypting each ϵj for j ∈ {0, . . . , log n− 1}, we pack each ϵj as a
coefficient of a polynomial.

A server needs additional step called query unpacking to unpack the query as
log n ciphertexts each of which encrypts ϵj .
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Query Unpacking

This step takes additional time, however, the complexity is O(log n).
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Complexity Comparison

Table: Communication and computation complexity, n = database size, q-u:
query unpacking, ℓ= FHE parameter

Protocol Query Answer First-Step Main
XPIR O(d d

√
n) O(F d−1) N/A Ω(n + F

√
n)

SealPIR O(d⌈ d
√
n/N⌉) O(F d−1) O(d d

√
n) Ω(n + F

√
n)

SHECS-PIR O(log n) O(1) N/A O(ℓn)
SHECS-PIR (q-u) O(⌈log n/N⌉) O(1) O(log n) O(ℓn)

First-Step is Query Unpacking in SHECS-PIR, Expand in SealPIR.
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Oblivious RAM
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Oblivious RAM (ORAM)

Oblivious RAM (ORAM) is a cryptographic primitive that allows a client to
store its private data on an untrusted server without leaking any information
to the server.

If op = Read, data = ⊥ and d = desired item.
If op = Write, d = random value.

Note: ORAM cannot be used for PIR since the data base should be
encrypted under client’s key.
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Existing ORAM designs

ORAM was first introduced by Goldreich and Ostrovsky in 19874.
Ideal ORAM design should achieve low computation overhead for client
and low bandwidth blowup.
Bandwidth blowup = the ratio between the communication cost of
ORAM and the non-private case where the access pattern is not hidden
Classical Model:

▶ the server acts as a plain storage device to support only read and write
operations.

▶ Client does all the jobs to guarantee the desired security.
▶ Ω(log n) bandwidth blowup is inevitable in this model, where n= # data

elements.
Server computation model:

▶ more realistic for the cloud storage scenario.
▶ allows constant O(1) bandwidth blowup via homomorphic encryption in

20165.
4Towards a theory of software protection and simulation by oblivious RAMs
5Onion ORAM: A constant bandwidth blowup oblivious RAM
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ORAM based on (F)HE (Onion ORAM/Onion Ring ORAM6)
Previous server aided efficient ORAM structure:

n data elements are distributed in a tree of depth log n.
The client needs to maintain the state of the database locally.
Server only touches a path which is indicated via client’s query.
logarithmic complexity in terms of both communication and
computation

6Onion Ring ORAM: Efficient Constant Bandwidth Oblivious RAM from (Leveled)
TFHE
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ORAM based on (F)HE (Onion Ram/Onion Ring ORAM)

Each node(bucket) consists of Z blocks.
Each block is either an encrypted real data element or Enc(0) under an
FHE scheme.
Client knows where real elements are stored in the tree via setup phase.
Client asks a path and a block per node on the path to be touched.
Server homomorphically adds up all the requested log n blocks.

J.Park (COSIC) Applications of FHE ISCwsISC 23 / 77



ORAM based on (F)HE (Onion Ram/Onion Ring ORAM)
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When does "writing" happen?

Server proceeds the same protocol as described in the previous slide.
Server stores all the queries (specifically data part) at the root until it is
fully filled (it can store up to Z queries)
Once the root is full, server runs an interactive "eviction" protocol with
the client to empty the root and move blocks towards the leaves via
reshuffling all the blocks of buckets on a specified path.
In other words, in every Z accesses, eviction should be run.
During eviction, the requested update values are stored in the desired
position.
Eviction protocol is considered as "offline phase" since it does not
depend on query.
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Pros and cons of the previous approaches

Pros:
▶ Communication Complexity = O(log n),

hence bandwidth blow-up = O(1)
▶ (Online) computation complexity = O(log n); the actual running time is

fast since it only consists of homomorphic addition (cheap).
Cons:

▶ Server’s memory overhead: O(Z · n)
▶ Eviction is an interactive protocol, which requires multiple interactions

between server and client (stateful client).
▶ Eviction consists of heavy homomorphic operations to reshuffle blocks of

log n buckets.
▶ The homomorphic operation has hidden large constant factors

Z logZ ≈ 213 in practice.
▶ Client has to keep some parts of data to help Eviction, which requires

somewhat large memory consumption.
▶ Not suitable for fully outsourced storage.
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Towards fully outsourced storage

What are the requirements for fully outsourced storage?
1. Non-interactive protocol.
2. Stateless client:

▶ feel free to go offline at any point.
▶ little client’s effort in terms of memory and computation.

3. Low bandwidth blow-up.
4. Low latency of server.
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Non-interactive and Stateless ORAM based on FHE7

Query consists of the index of the data which a client wants to touch,
an operation, and the update value.
Since client does not give any help for computation of server (stateless),
the server has to touch every element to give the correct answer.
Communication = O(log n); asking bit representation of the index.
Computation = O(n).

7Panacea: Non-interactive and Stateless Oblivious RAM
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Building Blocks of Panacea
CMUX(C ,Enc(a),Enc(b)) := C · (Enc(b)− Enc(a)) + Enc(a)
Homomorphic De-multiplexer: It takes a (encrpyted) bit representation
of a positive integer a ∈ {0, . . . , n − 1}, outputs an (encrypted) unit
vector where the a-th component is Enc(1), Enc(0) elsewhere.
We start with an empty tree except the root which has a value 1.
After each computation on each level, the root value is
homomorphically copied to the desired nodes.
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Homomorphic De-multiplexer

Let the value of the parent node be b, and the value of child nodes is
denoted by c . We need an extra information called a controller bit per level,
denoted by C which is an encryption of a bit.

Computation on the right child node:= c := C · b
Computation on the left child node:= c := (1− C ) · b

a := 3, encrypted as (Enc(0),Enc(1),Enc(1))2; the 3rd element from
the left (starting from 0-th).
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Core design of Panacea

Client:
▶ sends a query (α, op, data); α homomorphically indicates where he

wants to touch, op is an encryption of bit, data is an encryption of an
update value.

Server:
1 Response Phase

⋆ runs homomorphic de-multiplexer to get an unit vector of dimension n
which consists of encryption of 1 on the desired component.

⋆ computes dot product between the unit vector and the data base vector.
⋆ sends the result to the client.

2 Update Phase
for j = 0, ..., n − 1

⋆ runs CMUX(op, dj , data) =: temp, where dj is the j-th original data
⋆ updates dj := CMUX(Lj , dj , temp)

We note that the latency of the server only includes the response phase,
update phase occurs after answering to the client.
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Optimization for Latency

Our computation complexity O(n) is not desirable for real-world
applications.
Since our construction does not rely on any specific structure of the
database, there are more ways to optimize our design than tree-based
approaches.
We can take advantage of parallel computation!
We can also make use of batch code method to amortize the
computation cost.
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Probabilistic Batch Code (PBC)
A probabilistic batch code, parameterized by the 5-tuple (n,m, k, b, p),
takes as input a database with n elements, and outputs a set of m
(possibly distinct) elements distributed among b buckets, such that any
k elements from the original database can be retrieved by fetching at
most one element from each of the b buckets with probability p.
We want m < kn to have any performance improvement for the server.
We see the example (4,6,2,3,1) below8

8the example is from "SealPIR"
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Database allocation

To distribute n elements in b buckets, server uses ω hash functions:
H1, . . . ,Hω.
Server structures a database as a simple hash table like below:
group its items by hashed value, resulting in a b × B matrix like the
below on the right (Note that b · B ≈ m ≤ k · n):
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Client’s batch query

Client wants to fetch k elements by touching b buckets, each of which
should be touched at most once.
The problem can be looked at as a balls-and-bins problem. The client
has to place k balls (the intended read/write operations) into b bins
(the buckets in the database), where each bin can have at most one
ball.
Client uses Cuckoo Hashing technique to solve the problem.
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Cuckoo Hashing

There are ω number of hash functions {Hi}i∈[ω], where Hi (·) ∈ [b], for
b ∈ Z+.

There is a table of b = ω · k slots.
To insert an item x into the table, sample i ← [ω] at random, and
insert (x , i) at location Hi (x) if the slot is empty.
If the slot is already occupied by (y , j), we replace (y , j) with (x , i),
then choose j ′ ← [h]\{j}, and recursively re-insert (y , j ′) into the table.

By doing so, you can insert all k items into b slots without collision.
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Consistency Correction

However, we cannot just use the same technique of PIR, directly since
client can overwrite the existing file in ORAM.
In other words, since the batching technique requires redundancy, all ω
copies of data elements need to be updated with the same requested
value for each write access.
In order to avoid data inconsistency, there is another solution
introduced, called consistency correction.
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Consistency Correction

The other two x2 in 4th bucket and b-th bucket should be also updated
to y .
Note that everything is encrypted in server’s database.
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Consistency Correction
Server knows where the redundancy per item occurs in the data table
via his hash table, being oblivious to which items are encrypted.
For simplicity, we set ω = 3. Server knows the three tuples of indices
(1, 1), (4, 3), (b, 2) which encrypts the same item.
Let’s make the three value on (1,1), (4, 3) and (b, 2) same with the
value on those positions after update phase.
Requirements:

▶ the operation bits B1,B4,Bb per the three buckets
▶ Unit vector L1, L4, Lb computed via homomorphic de-multiplexer.

V new := V1,1 · (1− L1,1 · B1 − L4,3 · B4 − Lb,2 · Bb)

+ V1,1 · L1,1 · B1 + V4,3 · L4,3 · B4 + Vb,2 · Lb,2 · Bb.

Since all the queries are distinct, no more or equal to two of Li ,j ’s are
encryptions of 1.
Bi = Enc(0) if opi = Read.
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Overall complexity

Table: Comparison between our design and previous ORAM approach in terms of
memory consumption (in bits) and computation of both server and client. We
denote Z is the block size of each node in stateful design, n is the number of data
elements.

Panacea Stateful ORAM
Memory (Server) O(w · n · N · log q) O(Z · n · N · log q)
Memory (Client) O(w · n · log n) O(n · log n + Z · N · log q)

Stateful × ✓
Comp (server) O(n) O(Z · logZ · log n)
Comp (Query) O(k · log n) O(k · log n)

Comp (Eviction) N/A O(Z · logZ · log n)
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Panacea: Non-interactive and Stateless ORAM

Table: Computation time required by the server for database size n, with n from
212 to 219, for the size of the batch k = 256 with PBC. Numbers in brackets are
amortized cost. All times are in seconds. # threads= 36

n Response Duration Update Duration Total Time
212 2.47 (0.0096) 1.01 (0.0004) 3.48 (0.014)
214 9.53 (0.037) 2.89 (0.011) 12.42 (0.049)
216 38.08 (0.15) 11.04 (0.043) 49.13 (0.19)
218 147.92 (0.58) 48.02 (0.19) 195.94 (0.77)
219 296.43 (1.16) 94.83 (0.37) 391.26 (1.53)
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Private Set Intersection
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Private Set Intersection (PSI)

Private Set Intersection (PSI) is a two party protocol where both parties
holding their own sets wish to learn the intersection of both sets keeping
oblivious to the rest.
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Applications of PSI

Private Contact Discovery: Given a user’s address book, find out
which of their contacts also use the same messenger (such as
WhatsApp) without revealing its information to the messenger’s server.
Password Monitor: Microsoft offers a service called Password Monitor
for clients based on PSI via homomorphic encryption to check if their
password stored in Microsoft have been found in a third-party breach.
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PSI for unbalanced Sets

The most common example is Private Contact Discovery.
There are extremely fast protocols based on oblivious transfer (OT),
which requires high communication complexity and multiple interactions
between two parties.
Communication is linear in both set sizes.
Undesirable complexity for unbalanced sets
We need something else for such scenario.
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FHE based PSI9

Non-interactive protocol.
Asymptotically almost optimal complexity.
Better performance when one set is much smaller than the other set.
Computational overhead is still a bottleneck, but comparable to
non-FHE based protocols due to many optimization techniques.

9Fast Private Set Intersection from Homomorphic Encryption
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Naive approach

Server’s set Y := (y1, . . . , yNy ), |Y | = Ny

Client’s set X := (x1, . . . , xNx ), |X | = Nx ≪ Ny

Client sends all Enc(xi )’s to the server.
Server computes the following for each xi :

ri

Ny∏
j=1

(Encsk(xi )− yj) = ri

Ny∏
j=1

(Encsk(xi − yj)),

sk : client’s secret key, and ri : a random element sampled from a proper set.

Communication: O(Nx)→ it looks optimal!
Computation: O(Nx · Ny )→ too much!
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Optimization 1 : Batching

There is a ring isomorphism between ZN
t and Zt [X ]/(XN + 1)

for a prime t ≡ 1 mod 2N and N(a power of 2),

ι: ZN
t

(m1, . . . ,mN)

∈

Zt [X ]/(XN + 1)

T (X )

∈

One ring addition/multiplication over Zt [X ]/(XN + 1) gives us N
parallel pointwise additions/multiplications over Zt .
If a client splits its set elements into Nx/N chucks, and each chunk
which contains N elements is encoded via the map ι and encrypt them,

▶ the number of ciphertexts reduces down to O(Nx/N)
▶ the computation complexity is improved to O(Nx · Ny/N).
▶ if N ≈ Nx , complexity becomes linear in Ny .
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Optimization 2 : Hashing

With only batching technique of client, server has to encode each yj
into individual polynomial, resulting in preparing Ny polynomials.
Homomorphic operations between
Enc(Encode((x1, x2, . . . , xN−1, xN))) and Enc(Encode((yj , yj . . . , yj)))
In order to maximize the effect of batching technique, server also needs
to structure data in an amenable format, letting him make use of
batching as well.
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Optimization 2 : Hashing

Server does the following:
1. prepare k hash functions H1, . . . ,Hk , where Hi (·) ∈ {1, . . . ,m}
2. generate a simple hash table like the figure below (on the left):
3. group its items by hashed value, resulting in a m × B matrix like the

below on the right (Note that k · Ny ≤ m · B):
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Optimization 2 : Hashing

Client does the following:
1. prepare the same k hash functions as the server’s
2. use Cuckoo Hashing technique to distribute all Nx items in different

buckets (See figure below on the left).

3. Note that each item is assigned to its own (unique) bucket (Nx ≤ m).
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Optimization 2 : Hashing & Batching

Client:
1. parses the hash table into m/N vectors of dimension N
2. encodes each vector individually.
3. encrypts all, resulting in m/N ciphertexts.

Server:
1. parses each of B columns into m/N vectors of dimension N.
2. encodes each vector individually, resulting in B ·m/N polynomials.
3. perform PSI.

Complexity:
▶ Communication: from O(Nx/N) to O(m/N),

where Nx ≤ m.
▶ Computation: from (Nx · Ny/N) to O(k · Ny/N),

where k ≪ Nx in practice (k = 3).
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Optimization 3: Windowing

Recall server’s computation for each query c := Encsk(x), where x ∈ X :

r

Ny∏
j=1

(c − yj)

= r · cNy + r · aNy−1 · cNy−1 + · · ·+ r · a1 · c + r · a0

Given only c , the multiplication depth is log(Ny + 1) to compute r · cNy .
If client sends all c j for j ∈ [Ny ] to the server, then the multiplication
depth is reduces to 1;
computing dot product between (cNy , cNy−1, . . . , 1) and
(r , r · aNy , . . . , r · a0)

This results in huge communication blow-up; O(Ny ).
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Optimization 3: Windowing

Let’s strike a balance between computation and communication by
introducing another parameter ℓ.

Client sends ci ,j := c i ·2
ℓ·j

, for 1 ≤ i ≤ 2ℓ − 1 and 0 ≤ j ≤ ⌊log2 Ny/ℓ⌋
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Optimization 3: Windowing

Communication increases; Nx · (2ℓ − 1) · ⌊log2 Ny/ℓ⌋ from Nx

The maximum number of multiplication is ⌊log2 Ny/ℓ⌋+ 1.
Hence, the multiplication depth is reduced down to
O(log2(⌊log2 Ny/ℓ⌋+ 1)) from O(log2 Ny + 1)

J.Park (COSIC) Applications of FHE ISCwsISC 55 / 77



Putting it all together
(with windowing, batching and hashing)

Communication:
▶ m/N · (2ℓ − 1) · ⌊log2 B/ℓ⌋, where Nx ≤ m and B ≥ Ny ·k

m

Multiplication depth:
▶ O(log2(⌊log2 B/ℓ⌋+ 1))

Complexity:
▶ Communication: O(Nx · logNy )
▶ Computation: O(Ny )
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Applications to Privacy Preserving Machine Learning
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Machine learning as a cloud-based service

Stock-price prediction
Spam-filtering
Recommender system

Can we design a privacy preserving machine learning algorithm which
satisfies:

optimal communication/computation complexity
less communication cost
less computation cost
practical implementation result?
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There are already many attempts..

How? Improving the efficiency of their bulding blocks;
Privacy preserving convolution neural network10

▶ evaluting sigmoid functions homomorphically
▶ evaluating max function homomorphically
▶ optimal way of matrix encoding

Privacy preserving k-nn algorithm11

▶ evaluating Euclidean distance between two vectors homomorphically
Private decision tree evaluation (PDTE)12

▶ evaluating comparison function homomorphically
▶ applying transciphering to reduce communication cost.

10Applying Neural Networks to Encrypted Data with High Throughput and
Accuracy,Secure human action recognition by encrypted neural network inference

11Efficient homomorphic evaluation of k-NN classifiers
12SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption

and Transciphering
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Are they practical enough?

Their communication overhead is still high (due to ciphertext
expansion).
Inference phase: evaluation is done in few seconds13.
SIMD operation, hardware acceleration boosts the efficiency.
Even though their building blocks themselves are optimized, there are
still some ways to be “more” optimized, depending on application
scenarios.

13Secure human action recognition by encrypted neural network inference
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Machine learning as a service

Scenario: a server holds a machine learning model and a client wants to
evaluate the prediction/inference using the server’s model without
revealing its data to the server.
Server knows the model !
Do we really need ciphertext-ciphertext operation then?
We study the most recent technique which takes all the advantage of
server which knows "machine learning model" in clear-text.
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SortingHat: efficient Private Decision Tree Evaluation via
Homomorphic Encryption and Transciphering

Computationally efficient Private Decision Tree Evaluation (PDTE)
called SortingHat via Homomorphic Encryption

▶ Designed an efficient homomorphic comparison algorithm where one
operand is a plaintext.

▶ Designed a homomorphic traversal algorithm.

Bandwidth efficient PDTE called t-SortingHat via Homomorphic
Encryption and Transciphering

▶ Thanks to transciphering, communication cost is 20,000 times less than
previous approach.

▶ Improved an existing transciphering technique (x400 faster)
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Private Decision Tree Evaluation

An important class of classifiers in machine
learning.
Each decision node : comparison between a
threshold value owned by a server and its
assigned attributes given by a client
The output of the comparison function
(either 0 or 1) denotes which child node to
travel.
The traversal outputs a vector where the
only one component corresponding to the
classification label is an encryption of 1, the
rest are encryptions of 0.
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Building blocks: i) Homomorphic Comparison

Hom.Comp(Enc(A),Enc(B))=Enc(1) if A ≥ B , Enc(0) otherwise.

▶ Threshold values are parts of classification model which a server knows.
▶ Ciphertext-plaintext operation is possible (much cheaper than

ciphertext-ciphertext operation used in previous works)

In other words,
we need Hom.Comp(Enc(A),B), where B is a plaintext.
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Hom.Comp(Enc(A),B)
Define Rq := Zq[x ]/(X

N + 1) and XN = −1.
If A is encoded as A(X ) := XA, and B(X ) = X 2N−B , where
0 ≤ A = B ≤ N.
A(X )·B(X ) = XA ·X 2N−B = XA+2N−B = X 2N = (XN)2 = (−1)2 = 1.
Likewise, we encode B as a polynomial like the following:

X 2N−B + X 2N−(B+1) + · · ·X 2N−N

The constant term of A(X ) · B(X ) will be 1 if A ≥ B , 0 otherwise.
Enc(A(X )) · B(X ) = Enc(A(X ) · B(X )); it only needs two polynomial
multiplications to compare A and B!
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Hom.Comp(Enc(A),B)

If A =
∑

i ϵi · 2i , ∀ϵi ∈ {0, 1} is encrypted as bit-by-bit like {Enc(ϵi )},
we tweak the bitwise comparison method.
Bitwise comparison starts from the most significant bit, gradually
proceeding towards lower significant bits until an inequality is found.
A = (A3A2A1A0)2, and B = (B3B2B1B0)2

xi := XNOR(Ai ,Bi ) = 1 when Ai = Bi , 0 otherwise.
B̄i := NOT (Bi ).

Comp(A,B) := A3B̄3 + x3A2B̄2 + x3x2A1B̄1 + x3x2x1A0B̄0
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Hom.Comp(Enc(A),B)

Hom.XNOR(Enc(Ai ),Bi ) := Enc(Ai ) if Bi = 1,
1− Enc(Ai )(= Enc(1− Ai )) otherwise.
Now we have three values A,B,C , and compute

1) Hom.Comp(Enc(A),B)

2) Hom.Comp(Enc(A),C ), where B = 10012 and C = 10102.

After 1), we already know x3, x2, A3B̄3, and A2B̄2.
We can reuse them for 2)
This is possible because B and C are plaintext.
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Building blocks: ii) Homomorphic Traversal

The goal of this algorithm to copy the value of the root to the desired
leaf of a tree.
We already studied similar one in ORAM section, called homomorphic
de-multiplexer.
Each decision node contains a precomputed function value c ∈ {0, 1}
called controller bit, and an empty slot.
The root value (b) is copied to the empty slot of the right child if root’s
c = 1, otherwise the slot remains empty.
We start at the root and repeat the process untill the leaf nodes are
reached.
The only one leaf is encryption of b and the rest are encryptions of 0
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Building blocks: ii) Homomorphic Traversal
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SortingHat

Client: sends encryptions of its attribute
vector x := (x1, x2 . . . , xn)

Server:
▶ Initialize all the node values to 0

except the root which is 1.
▶ Run Hom.Comp(xi , di ) := ci at each

decision node.
▶ Run HomTrav(ci , 1)→ L⃗.
▶ Compute V := ⟨L⃗, τ⃗⟩, where τ⃗ is a

vector consisting of the corresponding
classification labels.

▶ Send V to the client.
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Transciphering

FHE ciphertexts are too big !
Transciphering:

▶ symmetric key ciphertexts −→ FHE ciphertexts via homomorphic
decryption of the symmetric key scheme.

Computational overhead of transciphering?
We consider FiLIP cipher, a stream cipher specifically designed to be
evaluated with the underlying FHE scheme.
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FiLIP cipher
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FiLIP cipher

function f := XTHRk,d ,s is defined as

XTHRk,d ,s(z) = XORk(x1, . . . , xk) + Td ,s(y1, . . . , ys) ∈ F2,

where XORk(x1, . . . , xk) = x1 + · · ·+ xk ∈ F2.
▶ Td,s is defined as:

∀y = (y1, . . . , ys) ∈ Fs
2, Td,s(y) =

{
1 if WH(y) ≥ d ,

0, otherwise

where WH(y) is the Hamming weight of a binary vector y .

Once we have Enc(WH(y)), we can run Hom.Comp(Enc(WH(y)), d),
since d is already known to server, as a public protocol value.
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Improvement on Transciphering

Table: Comparison between the communication cost of the setup phase and the
running times of the homomorphic FiLIP decryption.

[HMR20]14 This approach Improvement
Setup 800 MB 200 MB ×4
Timing 1018 ms 2.62 ms ×388

14Transciphering, Using FiLIP and TFHE for an Efficient Delegation of Computation
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Implementation Result of SortingHat

Table: PDTE results for various datasets. The time is given in milliseconds. τ is
the number of threads.

[TBK20]15 [LZS18]16 SortingHat
dataset ID d m n τ = 16 τ = 16 τ = 1 τ = 6
heart 1565 3 5 13 940 590 42.3 10.5
breast 1510 7 17 30 - - 154 34.8
steel 1504 5 6 33 - - 51.9 12.3

housing* N/A 13 92 13 6300 10270 892 190
spam 44 16 58 57 3660 6880 553 115

artificial* N/A 10 500 16 22390 56370 4787 1045

d = the depth of a tree, m = # decision node, n= # attributes.
The input of client is encoded in the exponent of X like XA. so that we
can use the fastest comparison algorithm.

15Non-interactive private decision tree evaluation
16Non-interactive and output expressive private comparison from homomorphic

encryption
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t-SortingHat

The communication cost is about 2 · 104 times lower via transciphering

Table: The timing is listed in seconds.

dataset [TBK20] (τ = 16) Naive (τ = 1) Recursive (τ = 1)
heart 0.94 1.51 1.52

housing* 6.3 30.18 28.60
spam 3.66 20.3 21.49

artificial* 22.39 145.9 92.44

Transciphering outputs {Enc(ϵi )} where A :=
∑

i ϵi · 2i .
Then we use plaintext-ciphertext version of bitwise-comparison.
When the number of nodes are much higher than the number of
features (the artificial dataset), then the comparison technique
outperforms the naive approach.
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Thank you for your attention

J.Park (COSIC) Applications of FHE ISCwsISC 77 / 77


	Applications of FHE
	Private Information Retrieval
	Oblivious RAM
	Private Set Intersection
	Applications to Privacy Preserving Machine Learning

