Introduction to Zero-Knowledge Proofs and NIZK Arguments

Jens Groth

DFINITY

- contributor to the Internet Computer blockchain
- www. internetcomputer.org, which runs
- decentralized apps on-chain at web speed

Agenda

- Why zero-knowledge proofs are useful
- Definitions: setup, statements, security
- Sigma-protocols: a common type of zk-proofs
- Efficiency: effortless verification of complex statements!

Privacy and verifiability

Zero-knowledge proof system

Statement

Zero knowledge:
Nothing but truth revealed

Prover

Soundness:
Statement is true

Verifier $\sqrt{ }$

Zero-knowledge proofs

- Completeness
- Prover can convince verifier when statement is true
- Soundness
- Cannot convince verifier when statement is false
- Zero knowledge
- No leakage of information (except truth of statement) even if interacting with a cheating verifier

Internet voting

Tally without decrypting individual votes

Ciphertext
\qquad

Voter

Election authorities

Election fraud

Voter

Ciphertext

Election authorities

Zero-knowledge proof to prevent cheating

> Zero knowledge: Vote is secret

Voter

Election authorities

Preventing deviation (active attacks) by keeping participants honest

Yes, here is a zeroknowledge proof that everything is correct

Did you follow the protocol honestly
without deviation?

Alice

Bob

Zero-knowledge proofs ensure compliance

Problems typically arise when attackers deviate from the protocol (active attack)

Zero-knowledge proofs prevent
 deviation and give security against active attacks

P and NP

- A language L is a set of instances
- Languages in P can be efficiently decided
- Definition: L is in NP if there is a polynomial time decision procedure to tell for any instance ϕ whether the statement $\phi \in L$ is true or false
- Examples
- Instance: n, p, q

Statement: $n=p q$

- Instance: fast program P, input, output

Statement: P (input) = output

- Languages in NP can be efficiently decided with advice (a witness)
- Definition: L is in NP if there is an polynomial time decidable relation $R_{L}=\{(\phi, w)\}$ such that $\phi \in L$ if and only if there exists a witness w such that $(\phi, w) \in R_{L}$
- Examples
- Instance: n

Statement: there are primes p, q such that $n=p q$
Witness: p, q

- Instance: fast program P, output Statement: these exists input such that P (input) = output Witness: input

P vs NP

- Every language in P is also in NP
- With relation $R_{L}=\{(\phi, w) \mid \phi \in L, w=$ empty $\}$
- Many believe $\mathrm{P} \neq \mathrm{NP}$ but we do not know
- Millenium prize problem
- There are NP-complete languages L^{\prime}
- For any P-language L the statement $\phi \in L$ can be reduced to an equivalent statement $\phi^{\prime} \in L^{\prime}$ in polynomial time
- Efficient reduction $\phi \mapsto \phi^{\prime}$ such that $\phi^{\prime} \in L^{\prime}$ if and only if $\phi \in L$
- For most well-known examples of NP-complete languages we have efficient translations to corresponding witnesses
- Efficient reduction $(\phi, w) \mapsto w^{\prime}$ such that $(\phi, w) \in R_{L}$ if and only if $\left(\phi^{\prime}, w^{\prime}\right) \in R_{L^{\prime}}$
- If you have a zero-knowledge proof system for an NP-complete language, then you have zero-knowledge proofs for all languages in NP

Statements

$$
\left(x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \vee\left(x_{2} \wedge \mathrm{x}_{4} \wedge x_{5}\right)
$$

Hamiltonian path exists

- Statements are $\phi \in L$ for a given NP-language L
- Prover knows witness w such that $(\phi, w) \in R_{L}$
- But prover wants to keep the witness secret!

Setup

- The prover and verifier operate in a context; they may have a predefined setup
- Examples
- A prime order group \mathbb{G} where it is hard to compute discrete logarithms and one or more generators g, h for the group
- A description of a hash function Hash : $\{0,1\}^{*} \rightarrow\{0,1\}^{k}$
- A common reference string (CRS) from a trusted source

1	1	1	1	1	1	1	1	0	1

- Uniformly random reference string
- Structured reference string
- Nothing or just a security parameter λ to indicate desired security level

Statements

Standard binary NP relation is just the special case where R ignores σ

- We consider efficiently decidable ternary relations R containing triples (σ, ϕ, w)
- Setup σ
- Instance ϕ
- Witness w
- A statement is specified by a relation R, a setup σ and an instance ϕ, and claims there exists a witness w such that $(\sigma, \phi, w) \in R$
- We write such a statement as $\phi \in L_{\sigma}$

Syntax

- A proof system for a relation R consists of three probabilistic, stateful algorithms
- $\operatorname{Setup}(\lambda) \rightarrow \sigma$
- Given security parameter λ generate setup σ
- $\langle\operatorname{Prove}(\sigma, \phi, w) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow$ accept/reject
- Prover and verifier interact and after a number of rounds stop with the verifier outputting a decision

Completeness

Setup, statement

- Perfect completeness: an honest prover always convinces an honest verifier if the setup is honestly generated and the statement is true
- $\operatorname{Pr}\left[\operatorname{Setup}(\lambda) \rightarrow \sigma:\right.$ for all $\left.(\phi, w) \in R_{\sigma}\langle\operatorname{Prove}(\sigma, \phi, w) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow \operatorname{accept}\right]=1$
- Statistical completeness: there is overwhelming probability (even for a worst-case true statement made by an unbounded adversary) an honest prover will convince an honest verifier
- $\operatorname{Pr}\left[\operatorname{Setup}(\lambda) \rightarrow \sigma ; \operatorname{Adversary}(\sigma) \rightarrow(\phi, w) \in R_{\sigma}:\langle\operatorname{Prove}(\sigma, \phi, w) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow \operatorname{accept}\right] \approx 1$
- Computational completeness: there may exist worst case true statements where an honest prover fails to reliably convince an honest verifier but they're hard to find (bounded adversary)
- $\operatorname{Pr}\left[\operatorname{Setup}(\lambda) \rightarrow \sigma ;\right.$ Adversary $\left.(\sigma) \rightarrow(\phi, w) \in R_{\sigma}:\langle\operatorname{Prove}(\sigma, \phi, w) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow \operatorname{accept}\right] \approx 1$

Soundness

Sometimes people distinguish Proof = perfect or statistical soundness Argument = computational soundness

Setup, statement

IIC

- Perfect soundness: a cheating prover never convinces an honest verifier of a false statement (if the setup is honestly generated)
- $\operatorname{Pr}\left[\operatorname{Setup}(\lambda) \rightarrow \sigma:\right.$ for all $\phi \notin L_{\sigma}\langle\operatorname{Adversary}(\sigma, \phi) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow$ accept $]=0$
- Statistical completeness: a cheating prover is unlikely to convince an honest verifier (even with infinite computing power)
- $\operatorname{Pr}\left[\operatorname{Setup}(\lambda) \rightarrow \sigma:\right.$ for all $\phi \notin L_{\sigma}\langle\operatorname{Adversary}(\sigma, \phi) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow$ accept $] \approx 0$
- Computational completeness: a computationally bounded cheating prover is unlikely to fool an honest verifier
- $\operatorname{Pr}\left[\operatorname{Setup}(\lambda) \rightarrow \sigma ; \operatorname{Adversary}(\sigma) \rightarrow \phi \notin L_{\sigma}:\langle\right.$ Adversary; $\operatorname{Verify}(\sigma, \phi)\rangle \rightarrow$ accept $] \approx 0$

Proofs of knowledge

- Informal definition: the prover "knows" a witness
- Recall the earlier example
- Instance: n
- Statement: there exists primes p, q such that $n=p q$
- A proof of membership just demonstrates n has two prime factors
- Maybe nobody knows them, maybe easy to determine number of factors
- Knowledge soundness: a proof of knowledge demonstrates we could extract p and q from the prover and write them down

I know the factorisation of n
π

Amazing, n is one of the RSA challenges!

Zero knowledge

- Zero knowledge:
- The proof only reveals the statement is true, it does not reveal anything else
- Defined by simulation:
- The verifier could have simulated the proof without knowing the prover's witness

Zero knowledge

- Many variations of simulat on, here's an example of how to define a simulator
- $\operatorname{SimSetup}(\lambda) \rightarrow(\sigma, \tau)$
- Given security parameter, returns simulated setup together with a simulation trapdoor
- $\langle\operatorname{SimProve}(\sigma, \phi, \tau) ; \operatorname{Verify}(\sigma, \phi)\rangle \rightarrow \operatorname{accept} /$ reject
- Interactive algorithm SimProve does not know the witness, but instead uses knowledge of trapdoor to simulate the interaction
- Cannot leak information about witness

Zero knowledge

Real/simulated setup σ

True statement $\phi \in L_{\sigma}$

\longrightarrow guess
\longrightarrow guess

Indistinguishability between real proofs and simulated proofs
$\operatorname{Pr}[$ Real proof : guess $=$ real $] \approx \operatorname{Pr}[$ Simulation : guess $=$ real $]$

Zero knowledge

- Zero knowledge can be
- Perfect: the simulation is identical to a real proof (even for a worst case true statement)
- Statistical: the simulation is hard to tell apart from a real proof (even to an evil verifier with unlimited computational resources)
- Computational: the simulation is hard to tell apart from a real proof for a computationally bounded adversary
- Other useful but weaker definitions
- Witness hiding: the proof does not help you to compute the witness
- Witness indistinguishability: the proof does not help you tell which out of several possible witnesses the prover has
- Honest verifier zero knowledge (HVZK): if the verifier creates honest challenges according to the proof system, the proof leaks nothing about the witness

Performance parameters

- Most common measures of efficiency
- Communication (bits)
- Prover's computation (seconds)
- Verifier's computation (seconds)
- Round complexity (number of messages)
- Depending on use case other measures may be important
- Size of the setup if using a common reference string
- Memory consumption
- Parallelisation
- Energy consumption

Round complexity

- Interactive zero-knowledge proof (ZK proof)

- Non-interactive zero-knowledge proof (NIZK proof)

Fiat-Shamir heuristic

- An interactive proof system is public coin if the verifier only sends uniformly random challenges
- If these challenges are big enough (e.g. random 256 -bit strings) then one can use the Fiat-Shamir heuristic to make the proof system non-interactive

- Prover computes transcript where the verifier's challenges are replaced by message digests

Ultimate performance: zk-SNARK

- Succinct non-interactive argument of knowledge (SNARK)
- Proof system with succinct proofs (a few kbits)
- Verification may be very efficient
- Useful for languages with complex statements requiring a lot of computation to verify

Succinctness

- SNARKs are also interesting for languages in P
- Even if the verifier could decide the statement in polynomial time it may be cheaper to verify a succinct proof
- For such use cases you only need completeness and soundness
- People mix the terms SNARK and zk-SNARK
- Use zk-SNARK if you really care about zero knowledge
- Use SNARK if you do not care about zero knowledge
- Rule of thumb for research
- A succinct proof is small and cannot leak much information
- Usually it is hard to get soundness
- Usually it is easy to to get or to add zero knowledge

Sigma-protocols

Statement $\phi \in L$

Witness w
$(\phi, w) \in R_{L}$
$\operatorname{Verify}(\phi, a, x, z) \rightarrow$ accept/reject

Setup: prime order groups

- Let p be a prime and \mathbb{Z}_{p} the integers modulo p
- Let \mathbb{G} be a cyclic group of size p
- Let g be a group element in \mathbb{G}
- For all $a, b \in \mathbb{Z}_{p}: g^{a} \cdot g^{b}=g^{a+b}$
- For all $a, b \in \mathbb{Z}_{p}:\left(g^{a}\right)^{b}=g^{a b}$
- The discrete logarithm problem is given g, g^{α} to find α
- The DDH problem is given $g, h, g^{\alpha}, h^{\beta}$ to guess if $\alpha=\beta$

Sigma-protocol for DDH tuples

Instance $g, h, u, v \in \mathbb{G}, g \neq 1, h \neq 1$

Accept if and only if

$$
u^{x} a=g^{z} \text { and } v^{x} b=h^{z}
$$

Perfect completeness

Instance $g, h, u, v \in \mathbb{G}, g \neq 1, h \neq 1$
Witness α
$u=g^{\alpha}, v=h^{\alpha}$
$z=\alpha x+r$
$(\bmod p)$

$$
a, b
$$

$x \leftarrow \mathbb{Z}_{p}$ Accept if and only if

$$
\xrightarrow{z} \quad u^{x} a=g^{z} \text { and } v^{x} b=h^{z}
$$

$$
\begin{aligned}
& u^{x} a=\left(g^{\alpha}\right)^{x} g^{r}=g^{\alpha x+r}=g^{z} \\
& v^{x} b=\left(h^{\alpha}\right)^{x} h^{r}=h^{\alpha x+r}=h^{z}
\end{aligned}
$$

Perfect honest verifier zero knowledge

Instance $g, h, u, v \in \mathbb{G}, g \neq 1, h \neq 1$

Simulation

$$
a, b
$$

$$
x \leftarrow \mathbb{Z}_{p}
$$

$$
z \leftarrow \mathbb{Z}_{p}
$$

$$
a \leftarrow g^{z} u^{-x}
$$

$$
b \leftarrow h^{z} v^{-x}
$$

Accept if and only if
$\xrightarrow{z} \quad u^{x} a=g^{z}$ and $v^{x} b=h^{z}$

Both in simulation and in real proof x, z are random and uniquely define a, b, so simulated proof looks like real proof

Statistical soundness

Instance $g, h, u, v \in \mathbb{G}, g \neq 1, h \neq 1$

False statement with $u=g^{\alpha}, v=h^{\beta}, \alpha \neq \beta$
We have for some r, s that $a=g^{r}, b=h^{s}$
Now the prover gets a random challenge x
Since $u^{x} a=g^{z}$ the prover needs $z=\alpha x+r$
Since $v^{x} b=g^{z}$ the prover needs $z=\beta x+s$
Unlikely random x hits the intersection of two distinct lines

Sigma-protocol for discrete logarithm

Exercise

- Verify the Sigma protocol for discrete logarithm is (perfect) complete
- Show the Sigma protocol for discrete logarithm is (perfect) honest verifier zero-knowledge
- Show the Sigma protocol for discrete logarithm has (statistical) knowledge soundness
- Hint: Imagine the prover after sending a is able to answer two random challenges x, x^{\prime} with correct z, z^{\prime}

Perfect completeness

Perfect honest verifier zero knowledge

Instance $g, u \in \mathbb{G}, g \neq 1$
Simulation
$x \leftarrow \mathbb{Z}_{p}$
$z \leftarrow \mathbb{Z}_{p}$
$a \leftarrow g^{z} u^{-x}$

$\underset{\sim}{x} \quad$ Accept if $u^{x} a=g^{z}$
z

Both in simulation and in real proof x, z are random and uniquely define a so simulated proof looks like real proof

Perfect soundness!?

Instance $g, u \in \mathbb{G}, g \neq 1$

Accept if $u^{x} a=g^{z}$

Since g is a generator for \mathbb{G} it is clear that $u=g^{\alpha}$ for some $\alpha \in \mathbb{Z}_{p}$. So the prover cannot cheat! Actually, the Sigma protocol for membership in the language is silly, you did not need a Sigma protocol proof to tell the verifier that a discrete logarithm exists

Special soundness

If the prover can answer two distinct challenges then possible to efficiently compute witness

$\operatorname{Extract}\left(\phi, x, x, x^{\prime}, z^{\prime}\right) \rightarrow w$
Strategy: clone the prover's state after having sent a and try many challenges.
The prover "knows" w because we can extract the witness from this state.
This is also known as rewinding - run the proof, rewind back to a previous state, run again...

Statistical knowledge soundness

Instance $g, u \in \mathbb{G}, g \neq 1$

$z \quad$ Accept if $u^{x} a=g^{z}$

Suppose the prover has probability ε of convincing the verifier after having sent a. If ε is negligibly small, the verifier is unlikely to accept. If ε is significant, we can rewind and try many $x \leftarrow \mathbb{Z}_{p}$ until we have answers z, z^{\prime} to two challenges $x \neq x^{\prime}$
This gives us $u^{x} a=g^{z}$ and $u^{x^{\prime}} a=g^{z^{\prime}}$
Division of the two equations gives us $u^{x} a /\left(u^{x^{\prime}} a\right)=u^{x-x^{\prime}}=g^{z-z^{\prime}}$ So $u=g^{\left(z-z^{\prime}\right)\left(x-x^{\prime}\right)}$ and $\alpha=\left(z-z^{\prime}\right) /\left(x-x^{\prime}\right)$

Fiat-Shamir heuristic

Statement $\phi \in L$

Non-interactive zero-knowledge (NIZK) argument in the random oracle model, where Hash is modelled as random function to S
This justifies the honest verifier zero-knowledge notion, the verifier is "honest" because the verifier is a random oracle!

Arithmetic circuit satisfiability

Arithmetic circuit satisfiability for a circuit consisting of addition and multiplication gates over \mathbb{Z}_{p}.

- Instance: prime p, circuit C
- Witness: inputs to make the circuit output 0

Variation: some of the wires are fixed to constants specified in the instance, e.g., $w_{2}=4$

Popular type of statement

- NP-complete
- Natural, lots of cryptography use finite field arithmetic

Commitment scheme

- Hiding
- The commitment does not reveal information about the message
- Binding
- It is infeasible to open a commitment to two different messages

Pedersen commitments

- Key generation (setup)

Broken by quantum computers; but other homomorphic commitment schemes exist

- Pick a group \mathbb{G} of prime order p with random generators g and h. Commitment key $c k=(\mathbb{G}, p, g, h)$.
- Commitment
- Given $m \in \mathbb{Z}_{p}$ pick $r \leftarrow \mathbb{Z}_{p}$ and compute $c=g^{m} h^{r}$
- The opening of the commitment is $(m ; r)$
- The receiver can recompute to see the opening is valid
- Exercise
- Verify the commitment scheme is homomorphic, i.e., $\operatorname{com}_{c k}(m ; r) \cdot \operatorname{com}_{c k}\left(m^{\prime} ; r^{\prime}\right)=\operatorname{com}_{c k}\left(m+m^{\prime} ; r+r^{\prime}\right)$
- Argue the commitment scheme is perfectly hiding

Binding

$$
\begin{aligned}
& \quad c k \leftarrow \operatorname{KeyGen}(\lambda) \\
& \longrightarrow(m, r),\left(m^{\prime}, r^{\prime}\right) \\
& \operatorname{Pr}\left[\begin{array}{l}
\operatorname{com}_{c k}(m ; r)=\operatorname{com}_{c k}\left(m^{\prime} ; r^{\prime}\right) \\
m \neq m^{\prime}
\end{array}\right] \approx 0
\end{aligned}
$$

- Exercise
- Show if the adversary can find two different openings of a Pedersen commitment such that $c=g^{m} h^{r}=g^{m^{\prime}} h^{r^{\prime}}$, then the adversary can break the discrete logarithm problem and find τ such that $h=g^{\tau}$

Σ-protocol for knowledge of an opening

- Setup: $c k=(\mathbb{G}, p, g, h)$
- Instance: $c \in \mathbb{G}$
- Witness: $(m ; r)$ such that $c=\operatorname{com}_{c k}(m ; r)$

$$
\begin{aligned}
& b, s \leftarrow \mathbb{Z}_{p} \\
& a=\operatorname{com}_{c k}(b ; s) \\
& f=m x+b \\
& z=r x+s
\end{aligned}
$$

Accept if $c^{x} a=\operatorname{com}_{c k}(f ; z)$

- Exercise
- Show it is complete, special sound and honest verifier zero knowledge
- Modify the protocol to prove the committed m is 0

Sigma-protocol for arithmetic circuit over \mathbb{Z}_{p}

Strategy

- Commit to the wires
- For public values, commit in a directly verifiable manner, e.g., com ($v ; 0$)
- Use homomorphism to handle addition gates $\operatorname{com}\left(w_{1}\right) \cdot \operatorname{com}\left(w_{2}\right) \rightarrow \operatorname{com}\left(w_{3}\right)$
- Use Sigma-protocols to prove the committed values satisfy multiplication gates, e.g., $v=w_{2} \cdot w_{3}$

Addition gates

- Consider a gate saying $w_{3}=w_{1}+w_{2}$
- Given commitments

$$
c_{1}=\operatorname{com}_{c k}\left(w_{1} ; r_{1}\right) \text { and } c_{2}=\operatorname{com}_{c k}\left(w_{2} ; r_{2}\right)
$$

compute the commitment to w_{3} as

$$
c_{3}=c_{1} \cdot c_{2}
$$

which by the homomorphic property of the commitment scheme automatically gives a verifiable commitment to

$$
w_{3}=w_{1}+w_{2}
$$

Sigma-protocol for multiplication gates

- Instance: c_{1}, c_{2}, c_{3}
- Witness: $w_{1}, r_{1}, w_{2}, r_{2}, w_{3}, r_{3}$ satisfying
$w_{3}=w_{1} w_{2}$
$c_{1}=\operatorname{com}\left(w_{1}\right)$
$c_{2}=\operatorname{com}\left(w_{2}\right)$
$c_{3}=\operatorname{com}\left(w_{3}\right)$
$b, s, t \leftarrow \mathbb{Z}_{p}$
$a=\operatorname{com}(r ; s)$
$b=\operatorname{com}\left(-w_{2} r ; t\right)$

Sketch of soundness
$f=w_{1} x+r$
$f w_{2}-x w_{3}+\beta=\left(w_{1} w_{2}-w_{3}\right) x+\left(r w_{2}+\beta\right)=0$

Accept if

$$
\begin{aligned}
& c_{1}^{x} a=\operatorname{com}\left(f ; z_{1}\right) \\
& c_{2}^{f} c_{3}^{-x} b=\operatorname{com}\left(0 ; z_{2}\right)
\end{aligned}
$$

Cost to prove arithmetic circuit satisfiability

- Commit to the inputs to the circuit and inputs to multiplication gates
- A commitment per wire
- For public values, commit in a directly verifiable manner, e.g., $\operatorname{com}(v ; 0)$
- Free
- Use homomorphism to handle addition gates
$\operatorname{com}\left(w_{1}\right) \cdot \operatorname{com}\left(w_{2}\right) \rightarrow \operatorname{com}\left(w_{3}\right)$
- Free
- Use Sigma-protocols to prove the committed values satisfy multiplication gates, e.g., $v=w_{2} \cdot w_{3}$
- A few group and field elements per multiplication gate
- In total for an N-gate circuit
- $O(N)$ group and field elements

Σ-protocol for knowledge of many openings

- Setup: $c k=(\mathbb{G}, p, g, h)$
- Instance: $c_{1}, \ldots, c_{t} \in \mathbb{G}$
- Witness: openings $\left(m_{i} ; r_{i}\right)$ such that $c_{i}=\operatorname{com}\left(m_{i} ; r_{i}\right)$

Communication
$1 \mathbb{G}+2 \mathbb{Z}_{p}$
for instance size $t \mathbb{G}$

Accept if
$a \prod c_{i}^{x^{i}}=\operatorname{com}(f ; z)$

- Sketch of knowledge soundness
- For $t=1$ this is exactly as before, if the prover can answer two distinct challenges x, x^{\prime} we can combine the two resulting verification equations to open c_{1}
- For larger t if the prover can answer $t+1$ distinct challenges $x, x^{\prime}, x^{\prime \prime}, \ldots$ we can for each c_{i} combine the $t+1$ verification equations to find an opening

Generalized Pedersen commitment

- Key generation (setup)
- Pick a group \mathbb{G} of prime order p with random generators h and g_{1}, \ldots, g_{n}. Commitment key $c k=\left(\mathbb{G}, p, h, g_{1}, \ldots, g_{n}\right)$.
- Commitment
- Given $m_{1}, \ldots, m_{n} \in \mathbb{Z}_{p}$ pick $r \leftarrow \mathbb{Z}_{p}$ and let $c=h^{r} \prod g_{i}^{m_{i}}$
- The opening of the commitment is $\left(m_{1}, \ldots, m_{n}, r\right)$
- Properties
- Perfectly hiding
- Computationally binding under discrete log assumption
- Homomorphic

$$
\operatorname{com}(\vec{a} ; r) \cdot \operatorname{com}(\vec{b} ; s)=\operatorname{com}(\vec{a}+\vec{b} ; r+s)
$$

Σ-protocol for knowledge of many openings

- Setup: $c k=\left(\mathbb{G}, p, h, g_{1}, \ldots, g_{n}\right)$
- Instance: $c_{1}, \ldots, c_{t} \in \mathbb{G}$
- Witness: openings $\left(\vec{m}_{i} ; r_{i}\right)$ such that $c_{i}=\operatorname{com}\left(\vec{m}_{i} ; r_{i}\right)$

Instance + proof size
$t+1 \mathbb{G}+n+2 \mathbb{Z}_{p}$
for witness size $t n$

$$
\begin{aligned}
& \vec{b}, s \leftarrow \mathbb{Z}_{p} \\
& a=\operatorname{com}(\vec{b} ; s) \\
& \vec{f}=\vec{b}+\sum x^{i} \vec{m}_{i} \\
& z=s+\sum x^{i} r_{i}
\end{aligned}
$$

Accept if $a \prod c_{i}^{x^{i}}=\operatorname{com}(\vec{f} ; z)$

- Sketch of knowledge soundness
- For larger t if the prover can answer $t+1$ distinct challenges $x, x^{\prime}, x^{\prime \prime}, \ldots$ we can for each c_{i} combine the $t+1$ verification equations to find an opening
- This time each opening is a size n vector and some randomness

Proofs of knowledge with sublinear communication

- This is a Sigma-protocol with sublinear communication
- You can prove knowledge of $t n$ field elements using only $O(t+n)$ elements to describe the instance and send messages in the proof
- If we set $t \approx n$ we can prove knowledge of N field elements using only $O(\sqrt{N})$ communication!
- If you use the Fiat-Shamir heuristic it becomes a non-interactive proof system. I.e., we have a zk-SNARK for proving knowledge of many field elements at once, where the proof size is much smaller than the witness
- And the computation to verify the proof is only $O(\sqrt{N})$ exponentiations, which is easier to compute than if you had the whole witness and needed to verify the openings directly

Proofs of arithmetic circuit satisfiability

| | Rounds | Prover | Verifier | Comm. |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Cramer-Damgård 1997 | 3 | $6 N$ expo | $6 N$ expo | $11 N$ elem |
| Groth 2009 | 7 | $6 N / \log N$ expo | $O(N)$ mult | $16 \sqrt{ }$ N elem |
| Bootle-Cerulli-Chaidos-
 Ghadafi-Groth 2016 | $2 \log N+1$ | $12 N$ expo | $4 N$ expo | $6 \log N$ elem |

- Ideas behind the constructions
- Commit to wires with Pedersen commitments, prove the wires respect the gates
- Commit with $\sqrt{ } \mathrm{N}$-wide Pedersen commitments, prove the wires respect the gates
- Start with N -wide generalised Pedersen commitments, don't show any N -wide openings but recursively prove the openings exist and are correct with less wide commitments
- Bulletproofs [Bünz-Bootle-Boneh-Poelstra-Wuille-Maxwell17] is a popular and widely used proof system that builds on [BCCGG16]

Can proof for arithmetic circuit satisfiability be even smaller?

- There are zk-SNARKs with O(1)-sized proofs and you can get as low as 3 group elements [Groth10,Groth16]
- Which means you can prove an arithmetic circuit with billions of gates is satisfiable using only a few hundred bytes to convince the verifier!
- But the techniques are different; they rely on groups with pairings
- Let p be a prime
- Let $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ be cyclic groups of size p
- Let $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ be an efficiently computable bilinear map
- If g_{1}, g_{2} are generators of the source groups $\mathbb{G}_{1}, \mathbb{G}_{2}$ then $e\left(g_{1}, g_{2}\right)$ generates \mathbb{G}_{T}
- For all $a, b \in \mathbb{Z}_{p}$ we have $e\left(g_{1}^{a}, g_{2}^{b}\right)=e\left(g_{1}, g_{2}\right)^{a b}$
- In groups with pairings, not only do you have 'additions and multiplication with a known constant' in the exponent; now you also have 'multiplication in the exponent'

Arithmetic circuit

- Write each multiplication gate as a quadratic equation, here $\left(a_{1}+a_{3}\right) \cdot a_{3}=a_{2}$
- In general arithmetic circuit can be written as a set of quadratic equations of the form $\sum a_{i} u_{i} \cdot \sum a_{i} v_{i}=\sum a_{i} w_{i}$
over variables a_{1}, \ldots, a_{m} and by convention $a_{0}=1$
- A fixed arithmetic circuit defines an NP-language with statements $\left(a_{1}, \ldots, a_{\ell}\right)$ and witnesses $\left(a_{\ell+1}, \ldots, a_{m}\right)$

zk-SNARK for the circuit being satisfiable for an instance $\left(a_{1}, \ldots, a_{m}\right)$

- Common reference string generation: the circuit defines what is called a quadratic arithmetic program (QAP) consisting of polynomials $\left\{u_{i}(x)\right\},\left\{v_{i}(x)\right\},\left\{w_{i}(x)\right\}, t(x)$. Pick secret $\alpha, \beta, \gamma, \delta, x \leftarrow \mathbb{Z}_{p}$ and publish

$$
\sigma=\left(g_{1}^{\alpha}, g_{1}^{\beta}, g_{1}^{\delta},\left\{g_{1}^{x^{i}}\right\},\left\{g_{1}^{\frac{x_{i}^{i}(x)}{\delta}}\right\},\left\{g_{1}^{\frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\gamma}}\right\}_{i \leq t},\left\{g_{1}^{\frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\delta}}\right\}_{i \geq e}, g_{2}^{\beta}, g_{2}^{\gamma}, g_{2}^{\delta},\left\{g_{2}^{x^{i}}\right\}\right)
$$

- $\operatorname{Prove}\left(\sigma, \phi=\left(a_{1}, \ldots, a_{\ell}\right), w=\left(a_{\ell+1}, \ldots, a_{m}\right)\right)$: pick $r, s \leftarrow \mathbb{Z}_{p}$ and return $\pi=\left(g_{1}^{A}, g_{2}^{B}, g_{1}^{C}\right)$ where

$$
\begin{array}{ll}
A=\alpha+\sum_{i>e} a_{i} u_{i}(x)+r \delta & B=\beta+\sum a_{i} v_{i}(x)+s \delta \\
C=\sum_{i>e} a_{i} \frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\delta}+\frac{h(x) t(x)}{\delta}+A s+r B-r s \delta
\end{array}
$$

- $\operatorname{Verify}\left(\sigma, \phi=\left(a_{1}, \ldots, a_{\ell}\right), \pi\right)$: check $\phi \in \mathbb{Z}_{p}^{\ell}$ and $\pi \in \mathbb{G}_{1} \times \mathbb{G}_{2} \times \mathbb{G}_{1}$ and the pairing product equation

$$
e\left(g_{1}^{A}, g_{2}^{B}\right)=e\left(g_{1}^{\alpha}, g_{2}^{\beta}\right) \cdot e\left(g_{1}^{\sum_{i \leq \ell} a_{i} \frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\gamma}}, g_{2}^{\gamma}\right) \cdot e\left(g_{1}^{C}, g_{2}^{\delta}\right)
$$

