

Introduction to Zero-Knowledge Proofs and
NIZK Arguments

Jens Groth

DFINITY
- contributor to the Internet Computer blockchain
- www.internetcomputer.org, which runs
- decentralized apps on-chain at web speed

http://www.internetcomputer.org

Agenda

• Why zero-knowledge proofs are useful
• Definitions: setup, statements, security
• Sigma-protocols: a common type of zk-proofs
• Efficiency: effortless verification of complex

statements!

2

Privacy and verifiability

 Hedge fund Investor

No!
It is a trade secret.

Did I lose all my money?
Show me the current

portfolio!

Zero-knowledge proof system

 Statement

 Prover Verifier

Witness

√

Soundness:
Statement is true

Zero knowledge:
Nothing but truth revealed

Zero-knowledge proofs

• Completeness
– Prover can convince verifier when statement is true

• Soundness
– Cannot convince verifier when statement is false

• Zero knowledge
– No leakage of information (except truth of statement)

even if interacting with a cheating verifier

5

Internet voting

 Voter Election authorities

 Ciphertext

Vote Encrypts vote to
keep it private

Tally without decrypting
individual votes

6

Election fraud

 Voter Election authorities

 Ciphertext

Not Bob Encrypts -100
votes for Bob

Is the encrypted
vote valid?

7

Zero-knowledge proof to prevent cheating

 Voter Election authorities

 Ciphertext

Soundness:
Vote is valid

Zero-knowledge
proof for valid
vote encrypted

Zero knowledge:
Vote is secret

8

Preventing deviation (active attacks) by
keeping participants honest

 Alice Bob

Yes, here is a zero-
knowledge proof that
everything is correct

Did you follow the
protocol honestly
without deviation?

Zero-knowledge proofs ensure compliance

10

Problems typically arise when
attackers deviate from the
protocol (active attack)

Zero-knowledge proofs prevent
deviation and give security against
active attacks

P and NP
• A language is a set of instances
• Languages in P can be efficiently decided

• Definition: is in NP if there is a polynomial time decision procedure to tell for any
instance whether the statement is true or false

• Examples
• Instance:

Statement:
• Instance: fast program P, input, output

Statement: P(input) = output
• Languages in NP can be efficiently decided with advice (a witness)

• Definition: is in NP if there is an polynomial time decidable relation such
that if and only if there exists a witness such that

• Examples
• Instance:

Statement: there are primes such that
Witness:

• Instance: fast program P, output
Statement: these exists input such that P(input) = output
Witness: input

𝐿

𝐿
ϕ ϕ ∈ L

n, p, q
n = pq

𝐿 RL = {(ϕ, w)}
ϕ ∈ L w (ϕ, w) ∈ RL

n
p, q n = pq

p, q

P vs NP
• Every language in P is also in NP

• With relation

• Many believe P NP but we do not know
• Millenium prize problem

• There are NP-complete languages

• For any P-language L the statement can be reduced to an equivalent
statement in polynomial time

• Efficient reduction
such that if and only if

• For most well-known examples of NP-complete languages we have efficient
translations to corresponding witnesses

• Efficient reduction
such that if and only if

• If you have a zero-knowledge proof system for an NP-complete language, then you
have zero-knowledge proofs for all languages in NP

RL = {(ϕ, w) |ϕ ∈ L, w = empty}
≠

L′

ϕ ∈ L
ϕ′ ∈ L′

ϕ ↦ ϕ′

ϕ′ ∈ L′ ϕ ∈ L

(ϕ, w) ↦ w′

(ϕ, w) ∈ RL (ϕ′ , w′) ∈ RL′

Statements

• Statements are for a given NP-language

• Prover knows witness such that
– But prover wants to keep the witness secret!

ϕ ∈ L 𝐿
𝑤 (ϕ, w) ∈ RL

13

1
0
1
0

Circuit SAT

 SAT
(𝑥1 ∧ 𝑥2 ∧ ¬𝑥3) ∨ (𝑥2 ∧ x4 ∧ 𝑥5)

Hamiltonian
path exists

Encrypted
valid vote

• The prover and verifier operate in a context; they may have a predefined setup
• Examples

• A prime order group where it is hard to compute discrete logarithms
and one or more generators for the group

• A description of a hash function
• A common reference string (CRS) from a trusted source

• Uniformly random reference string
• Structured reference string

• Nothing or just a security parameter to indicate desired security level

𝔾
g, h

Hash : {0,1}* → {0,1}k

λ

Setup

 1 1 1 1 1 1 1 1 0 1

Statements

• We consider efficiently decidable ternary relations containing
triples

– Setup

– Instance

– Witness

• A statement is specified by a relation , a setup and an instance
, and claims there exists a witness such that
– We write such a statement as

𝑅
(𝜎, 𝜙, 𝑤)

𝜎
𝜙
𝑤

𝑅 𝜎
𝜙 𝑤 (σ, ϕ, w) ∈ R

𝜙 ∈ 𝐿𝜎

15

Standard binary NP relation is just the
special case where ignores 𝑅 𝜎

Syntax

• A proof system for a relation consists of three
probabilistic, stateful algorithms

•
– Given security parameter generate setup

•
– Prover and verifier interact and after a number of

rounds stop with the verifier outputting a decision

𝑅

Setup(𝜆) → 𝜎
𝜆 𝜎

⟨Prove(𝜎, 𝜙, 𝑤); Verify(𝜎, 𝜙)⟩ → accept/reject

16

Completeness

 Setup, statement
Witness

• Perfect completeness: an honest prover always convinces an honest verifier if the setup
is honestly generated and the statement is true

•
• Statistical completeness: there is overwhelming probability (even for a worst-case true

statement made by an unbounded adversary) an honest prover will convince an honest
verifier

•
• Computational completeness: there may exist worst case true statements where an

honest prover fails to reliably convince an honest verifier but they’re hard to find (bounded
adversary)

•

Pr[Setup(λ) → σ : for all (ϕ, w) ∈ Rσ ⟨Prove(σ, ϕ, w); Verify(σ, ϕ)⟩ → accept] = 1

Pr[Setup(λ) → σ; Adversary(σ) → (ϕ, w) ∈ Rσ : ⟨Prove(σ, ϕ, w); Verify(σ, ϕ)⟩ → accept] ≈ 1

Pr[Setup(λ) → σ; Adversary(σ) → (ϕ, w) ∈ Rσ : ⟨Prove(σ, ϕ, w); Verify(σ, ϕ)⟩ → accept] ≈ 1

Soundness

 Setup, statement

• Perfect soundness: a cheating prover never convinces an honest verifier of a false
statement (if the setup is honestly generated)

•
• Statistical completeness: a cheating prover is unlikely to convince an honest

verifier (even with infinite computing power)
•

• Computational completeness: a computationally bounded cheating prover is
unlikely to fool an honest verifier

•

Pr[Setup(λ) → σ : for all ϕ ∉ Lσ ⟨Adversary(σ, ϕ); Verify(σ, ϕ)⟩ → accept] = 0

Pr[Setup(λ) → σ : for all ϕ ∉ Lσ ⟨Adversary(σ, ϕ); Verify(σ, ϕ)⟩ → accept] ≈ 0

Pr[Setup(λ) → σ; Adversary(σ) → ϕ ∉ Lσ : ⟨Adversary; Verify(σ, ϕ)⟩ → accept] ≈ 0

Sometimes people distinguish
Proof = perfect or statistical soundness
Argument = computational soundness

Proofs of knowledge

• Informal definition: the prover “knows” a witness
• Recall the earlier example

• Instance:

• Statement: there exists primes such that

• A proof of membership just demonstrates has two prime factors
• Maybe nobody knows them, maybe easy to determine number of factors

• Knowledge soundness: a proof of knowledge demonstrates we could
extract and from the prover and write them down

n
p, q n = pq

n

p q

19

π

Amazing, is one of
the RSA challenges!

n
I know the factorisation of n

Zero knowledge

• Zero knowledge:
– The proof only reveals the statement is true, it does not

reveal anything else
• Defined by simulation:

– The verifier could have simulated the proof without
knowing the prover’s witness

𝜙

𝜙 ∈ 𝐿𝜎

Zero knowledge

• Many variations of simulation, here’s an example of how to
define a simulator

•
– Given security parameter, returns simulated setup together with a

simulation trapdoor

•
– Interactive algorithm SimProve does not know the witness, but

instead uses knowledge of trapdoor to simulate the interaction
– Cannot leak information about witness

SimSetup(𝜆) → (𝜎, 𝜏)

⟨SimProve(𝜎, 𝜙, 𝜏); Verify(𝜎, 𝜙)⟩ → accept/reject

21

The simulator needs some extra
power to simulate. If you could
simulate without extra power,
you could break soundness!

Indistinguishability between real proofs and simulated proofs
 Pr[Real proof : guess = real] ≈ Pr[Simulation : guess = real]

guess

guess

Zero knowledge

𝑤

𝜏

True statement 𝜙 ∈ 𝐿𝜎

Real/simulated setup 𝜎

Zero knowledge

• Zero knowledge can be
• Perfect: the simulation is identical to a real proof (even for a worst

case true statement)
• Statistical: the simulation is hard to tell apart from a real proof (even

to an evil verifier with unlimited computational resources)
• Computational: the simulation is hard to tell apart from a real proof

for a computationally bounded adversary
• Other useful but weaker definitions

• Witness hiding: the proof does not help you to compute the witness
• Witness indistinguishability: the proof does not help you tell which

out of several possible witnesses the prover has
• Honest verifier zero knowledge (HVZK): if the verifier creates

honest challenges according to the proof system, the proof leaks
nothing about the witness

23

Performance parameters

• Most common measures of efficiency
– Communication (bits)
– Prover’s computation (seconds)
– Verifier’s computation (seconds)
– Round complexity (number of messages)

• Depending on use case other measures may be important
– Size of the setup if using a common reference string
– Memory consumption
– Parallelisation
– Energy consumption

Round complexity

• Interactive zero-knowledge proof (ZK proof)

• Non-interactive zero-knowledge proof (NIZK proof)

25

π

Fiat-Shamir heuristic

• An interactive proof system is public coin if the
verifier only sends uniformly random challenges

• If these challenges are big enough (e.g. random
256-bit strings) then one can use the Fiat-Shamir
heuristic to make the proof system non-interactive

• Prover computes transcript where the verifier’s
challenges are replaced by message digests

26

Hash

Ultimate performance: zk-SNARK

• Succinct non-interactive argument of knowledge (SNARK)
• Proof system with succinct proofs (a few kbits)
• Verification may be very efficient
• Useful for languages with complex statements requiring a lot of

computation to verify

27

π

Thanks, it only took
me a second to verify

your proof!

Here’s the last blockhash of
Bitcoin and a proof everything is the

result of a valid computation

Succinctness

• SNARKs are also interesting for languages in P
• Even if the verifier could decide the statement in polynomial time it

may be cheaper to verify a succinct proof
• For such use cases you only need completeness and soundness

• People mix the terms SNARK and zk-SNARK
• Use zk-SNARK if you really care about zero knowledge
• Use SNARK if you do not care about zero knowledge

• Rule of thumb for research
• A succinct proof is small and cannot leak much information
• Usually it is hard to get soundness
• Usually it is easy to to get or to add zero knowledge

28

Sigma-protocols

 Statement ϕ ∈ L

Witness 𝑤
(ϕ, w) ∈ RL 𝑎

 x ← Random

 𝑧

 Verify(ϕ, a, x, z) → accept /reject

Setup: prime order groups

• Let be a prime and the integers modulo

• Let be a cyclic group of size

• Let be a group element in

• For all

• For all

• The discrete logarithm problem is given to find

• The DDH problem is given to guess if

p ℤp p
𝔾 p
g 𝔾

a, b ∈ ℤp : ga ⋅ gb = ga+b

a, b ∈ ℤp : (ga)b = gab

g, gα α
g, h, gα, hβ α = β

30

Sigma-protocol for DDH tuples

Witness α
u = gα, v = hα

a, b

 x ← ℤp

 𝑧

Accept if and only if

uxa = gz and vxb = hz

r ← ℤp
a = gr

b = hr

z = αx + r
(mod p)

 Instance g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1

Perfect completeness

Witness α
u = gα, v = hα

a, b

 x ← ℤp

 𝑧
Accept if and only if

uxa = gz and vxb = hz

r ← ℤp
a = gr

b = hr

z = αx + r
(mod p) uxa = (gα)xgr = gαx+r = gz

vxb = (hα)xhr = hαx+r = hz

 Instance g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1

Perfect honest verifier zero knowledge

a, b

 x

 𝑧
Accept if and only if

uxa = gz and vxb = hz

Simulation

x ← ℤp
z ← ℤp
a ← gzu−x

b ← hzv−x

Both in simulation and in real proof are random and
uniquely define , so simulated proof looks like real proof

x, z
a, b

 Instance g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1

Statistical soundness
 Instance g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1

a, b
 x ← ℤp

 𝑧 uxa = gz and vxb = hz

False statement with
We have for some that
Now the prover gets a random challenge
Since the prover needs
Since the prover needs
Unlikely random hits the intersection of two distinct lines

u = gα, v = hβ, α ≠ β
r, s a = gr, b = hs

x
uxa = gz z = αx + r
vxb = gz z = βx + s

x

Sigma-protocol for discrete logarithm

 Instance g, u ∈ 𝔾, g ≠ 1
Witness α
u = gα

a

 x ← ℤp

 𝑧

Accept if uxa = gz

r ← ℤp
a = gr

z = αx + r
(mod p)

Exercise

• Verify the Sigma protocol for discrete logarithm is
(perfect) complete

• Show the Sigma protocol for discrete logarithm is
(perfect) honest verifier zero-knowledge

• Show the Sigma protocol for discrete logarithm has
(statistical) knowledge soundness
• Hint: Imagine the prover after sending is able to

answer two random challenges with correct
a

x, x′ z, z′

36

Perfect completeness

 Instance g, u ∈ 𝔾, g ≠ 1
Witness α
u = gα

a

 x ← ℤp

 𝑧 Accept if uxa = gz

r ← ℤp
a = gr

z = αx + r
(mod p) uxa = (gα)xgr = gαx+r = gz

Perfect honest verifier zero knowledge

 Instance g, u ∈ 𝔾, g ≠ 1

a

 x

 𝑧
Accept if uxa = gz

Simulation

x ← ℤp
z ← ℤp
a ← gzu−x

Both in simulation and in real proof are random and
uniquely define so simulated proof looks like real proof

x, z
a

Perfect soundness!?

 Instance g, u ∈ 𝔾, g ≠ 1
a

 x ← ℤp

 𝑧 Accept if uxa = gz

Since is a generator for it is clear that
for some . So the prover cannot cheat!
Actually, the Sigma protocol for membership in the
language is silly, you did not need a Sigma protocol proof
to tell the verifier that a discrete logarithm exists

g 𝔾 u = gα

α ∈ ℤp

Special soundness

If the prover can answer two distinct challenges then possible to
efficiently compute witness

40

 𝑎

 𝑥 ← 𝑆

 𝑧

 𝑥′ ← 𝑆

 𝑧′

 Extract(ϕ, x, x, x′ , z′) → w
Strategy: clone the prover’s state after having sent and try many challenges.
The prover “knows” because we can extract the witness from this state.
This is also known as rewinding - run the proof, rewind back to a previous state,
run again…

a
w

Statistical knowledge soundness

 Instance g, u ∈ 𝔾, g ≠ 1
a

 x ← ℤp

 𝑧 Accept if uxa = gz

Suppose the prover has probability of convincing the verifier after
having sent . If is negligibly small, the verifier is unlikely to
accept. If is significant, we can rewind and try many
until we have answers to two challenges
This gives us
Division of the two equations gives us
So and

ε
a ε

ε x ← ℤp
z, z′ x ≠ x′

uxa = gz and ux′ a = gz′

uxa /(ux′ a) = ux−x′ = gz−z′

u = g(z−z′)/(x−x′) α = (z − z′)/(x − x′)

Fiat-Shamir heuristic

Non-interactive zero-knowledge (NIZK) argument in the random oracle
model, where is modelled as random function to
This justifies the honest verifier zero-knowledge notion, the verifier is
“honest” because the verifier is a random oracle!

Hash 𝑆

42

 𝑎

 𝑥 ← 𝑆

 𝑧

 x = Hash(ϕ, a)

 𝑧

 𝑎

 Statement ϕ ∈ L

Arithmetic circuit satisfiability

wout

𝑤1 𝑤2

𝑤3

Arithmetic circuit satisfiability for
a circuit consisting of addition
and multiplication gates over .
- Instance: prime
- Witness: inputs to make the
circuit output 0

Variation: some of the wires are
fixed to constants specified in
the instance, e.g.,

Popular type of statement
- NP-complete
- Natural, lots of cryptography

use finite field arithmetic

ℤp
p, circuit C

w2 = 4

Commitment scheme

• Hiding
• The commitment does not reveal information about the message

• Binding
• It is infeasible to open a commitment to two different messages

Pedersen commitments

• Key generation (setup)
– Pick a group of prime order with random generators and

. Commitment key .

• Commitment
– Given pick and compute

• The opening of the commitment is
– The receiver can recompute to see the opening is valid

• Exercise
– Verify the commitment scheme is homomorphic, i.e.,

– Argue the commitment scheme is perfectly hiding

𝔾 𝑝 𝑔
h ck = (𝔾, p, g, h)

m ∈ ℤp r ← ℤp c = gmhr

(m; r)

com𝑐𝑘(𝑚; 𝑟) ⋅ com𝑐𝑘(𝑚′ ; 𝑟′) = com𝑐𝑘(𝑚 + 𝑚′ ; 𝑟 + 𝑟′)

Broken by quantum computers;
but other homomorphic
commitment schemes exist

Binding

• Exercise
– Show if the adversary can find two different openings of

a Pedersen commitment such that ,
then the adversary can break the discrete logarithm
problem and find such that

c = gmhr = gm′ hr′

τ h = gτ

𝑐𝑘 ← KeyGen(𝜆)

(𝑚, 𝑟), (𝑚′ , 𝑟′)

Pr[com𝑐𝑘(𝑚; 𝑟) = com𝑐𝑘(𝑚′ ; 𝑟′)
𝑚 ≠ 𝑚′] ≈ 0

Σ-protocol for knowledge of an opening

• Setup:

• Instance:

• Witness: such that

• Exercise
– Show it is complete, special sound and honest verifier zero knowledge
– Modify the protocol to prove the committed is 0

ck = (𝔾, p, g, h)
c ∈ 𝔾
(m; r) c = comck(m; r)

𝑚

𝑓, 𝑧

x ← ℤp

𝑎

b, s ← ℤp
a = comck(b; s)

𝑓 = 𝑚𝑥 + 𝑏
𝑧 = 𝑟𝑥 + 𝑠

 Accept if
𝑐𝑥𝑎 = com𝑐𝑘(𝑓; 𝑧)

Sigma-protocol for arithmetic circuit over ℤp

𝑣

𝑤1 𝑤2

𝑤3

Strategy
- Commit to the wires
- For public values, commit in

a directly verifiable manner,
e.g.,

- Use homomorphism to
handle addition gates

- Use Sigma-protocols to

prove the committed values
satisfy multiplication gates,
e.g.,

com(v; 0)

com(w1) ⋅ com(w2) → com(w3)

𝑣 = 𝑤2 ⋅ 𝑤3

Addition gates

• Consider a gate saying
• Given commitments

 and
compute the commitment to as

which by the homomorphic property of the commitment
scheme automatically gives a verifiable commitment to

𝑤3 = 𝑤1 + 𝑤2

𝑐1 = com𝑐𝑘(𝑤1; 𝑟1) 𝑐2 = com𝑐𝑘(𝑤2; 𝑟2)
𝑤3

𝑐3 = 𝑐1 ⋅ 𝑐2

𝑤3 = 𝑤1 + 𝑤2

Sigma-protocol for multiplication gates

• Instance:

• Witness: satisfying

𝑐1, 𝑐2, 𝑐3
w1, r1, w2, r2, w3, r3

w3 = w1w2 c1 = com(w1)
c2 = com(w2) c3 = com(w3)

f, z1, z2

x ← ℤp

a, b

b, s, t ← ℤp
a = com(r; s)
b = com(−w2r; t)

f = xw1 + r
z1 = xr1 + s
z2 = fr2 − xr3 + t

Accept if

cx

1a = com(f; z1)
c f

2c−x
3 b = com(0; z2)

Sketch of soundness
 f = w1x + r

fw2 − xw3 + β = (w1w2 − w3)x + (rw2 + β) = 0

Cost to prove arithmetic circuit satisfiability

𝑣

𝑤1 𝑤2

𝑤3

- Commit to the inputs to the circuit and
inputs to multiplication gates

- A commitment per wire
- For public values, commit in a directly

verifiable manner, e.g.,
- Free

- Use homomorphism to handle addition
gates

- Free

- Use Sigma-protocols to prove the
committed values satisfy multiplication
gates, e.g.,

- A few group and field elements per
multiplication gate

- In total for an -gate circuit
- group and field elements

com(v; 0)

com(w1) ⋅ com(w2) → com(w3)

𝑣 = 𝑤2 ⋅ 𝑤3

N
O(N)

Σ-protocol for knowledge of many openings
• Setup:

• Instance:

• Witness: openings such that

• Sketch of knowledge soundness
– For this is exactly as before, if the prover can answer two distinct challenges

we can combine the two resulting verification equations to open

– For larger if the prover can answer distinct challenges we can for each
 combine the verification equations to find an opening

ck = (𝔾, p, g, h)
c1, …, ct ∈ 𝔾

(mi; ri) ci = com(mi; ri)

t = 1 x, x′
c1

t t + 1 x, x′ , x′ ′ , . . .
ci t + 1

𝑓, 𝑧

x ← ℤp

𝑎

b, s ← ℤp
a = com(b; s)

f = b + ∑ ximi

z = s + ∑ xiri

 Accept if
a∏cxi

i = com(f; z)

Communication
1 +
for instance size

𝔾 2 ℤp
t 𝔾

Generalized Pedersen commitment

• Key generation (setup)
– Pick a group of prime order with random generators and

. Commitment key .

• Commitment
– Given pick and let

– The opening of the commitment is

• Properties
– Perfectly hiding
– Computationally binding under discrete log assumption
– Homomorphic

𝔾 𝑝 h
𝑔1, …, 𝑔𝑛 ck = (𝔾, p, h, g1, …, gn)

m1, …, mn ∈ ℤp r ← ℤp c = hr∏gmi
i

(𝑚1, …, 𝑚𝑛, 𝑟)

com(→𝑎 ; 𝑟) ⋅ com(→
𝑏 ; 𝑠) = com(→𝑎 +

→
𝑏 ; 𝑟 + 𝑠)

Σ-protocol for knowledge of many openings
• Setup:

• Instance:

• Witness: openings such that

• Sketch of knowledge soundness
– For larger if the prover can answer distinct challenges we can for

each combine the verification equations to find an opening

– This time each opening is a size vector and some randomness

ck = (𝔾, p, h, g1, …, gn)
c1, …, ct ∈ 𝔾

(⃗mi; ri) ci = com(⃗mi; ri)

t t + 1 x, x′ , x′ ′ , . . .
ci t + 1

n

⃗f , z

x ← ℤp

𝑎

b⃗, s ← ℤp

a = com(b⃗; s)

⃗f = b⃗ + ∑ xi ⃗mi

z = s + ∑ xiri

 Accept if
a∏cxi

i = com(⃗f ; z)

Instance + proof size
 +

for witness size
t + 1 𝔾 n + 2 ℤp

tn

Proofs of knowledge with sublinear
communication

• This is a Sigma-protocol with sublinear communication
• You can prove knowledge of field elements using only

elements to describe the instance and send messages in the proof
• If we set we can prove knowledge of field elements using only

 communication!
• If you use the Fiat-Shamir heuristic it becomes a non-interactive proof

system. I.e., we have a zk-SNARK for proving knowledge of many field
elements at once, where the proof size is much smaller than the witness

• And the computation to verify the proof is only exponentiations,
which is easier to compute than if you had the whole witness and
needed to verify the openings directly

tn O(t + n)

t ≈ n N
O(N)

O(N)

55

Proofs of arithmetic circuit satisfiability

56

Rounds Prover Verifier Comm.
Cramer-Damgård 1997 3 6N expo 6N expo 11N elem

Groth 2009 7 6N/log N expo O(N) mult 16√N elem

Bootle-Cerulli-Chaidos-
Ghadafi-Groth 2016

2 log N + 1 12N expo 4N expo 6 log N elem

• Ideas behind the constructions
• Commit to wires with Pedersen commitments, prove the wires respect the gates
• Commit with √N-wide Pedersen commitments, prove the wires respect the gates
• Start with N-wide generalised Pedersen commitments, don’t show any N-wide

openings but recursively prove the openings exist and are correct with less wide
commitments

• Bulletproofs [Bünz-Bootle-Boneh-Poelstra-Wuille-Maxwell17] is a popular and
widely used proof system that builds on [BCCGG16]

Can proof for arithmetic circuit satisfiability
be even smaller?

57

• There are zk-SNARKs with O(1)-sized proofs and you can get as low as 3 group elements
[Groth10,Groth16]

• Which means you can prove an arithmetic circuit with billions of gates is satisfiable
using only a few hundred bytes to convince the verifier!

• But the techniques are different; they rely on groups with pairings
• Let be a prime

• Let be cyclic groups of size

• Let be an efficiently computable bilinear map

• If are generators of the source groups then generates

• For all we have
• In groups with pairings, not only do you have ‘additions and multiplication with a known

constant’ in the exponent; now you also have ‘multiplication in the exponent’

p
𝔾1, 𝔾2, 𝔾T p
e : 𝔾1 × 𝔾2 → 𝔾T

g1, g2 𝔾1, 𝔾2 e(g1, g2) 𝔾T
a, b ∈ ℤp e(ga

1 , gb
2) = e(g1, g2)ab

Arithmetic circuit • Write each multiplication gate as a
quadratic equation, here

• In general arithmetic circuit can be

written as a set of quadratic
equations of the form

 over variables
 and by convention
• A fixed arithmetic circuit defines an

NP-language with statements
 and witnesses

(𝑎1 + 𝑎3) ⋅ 𝑎3 = 𝑎2

∑ 𝑎𝑖𝑢𝑖 ⋅ ∑ 𝑎𝑖𝑣𝑖 = ∑ 𝑎𝑖𝑤𝑖

𝑎1, …, 𝑎𝑚
𝑎0 = 1

(𝑎1, …, 𝑎ℓ)
(𝑎ℓ+1, …, 𝑎𝑚)

𝑎2

𝑎1 𝑎3

𝑎4

zk-SNARK for the circuit being satisfiable for
an instance (a1, …, am)

• Common reference string generation: the circuit defines what is called a quadratic arithmetic program
(QAP) consisting of polynomials . Pick secret and
publish

• : pick and return where

• : check and the pairing
product equation

{ui(x)}, {vi(x)}, {wi(x)}, t(x) α, β, γ, δ, x ← ℤp

σ = (gα
1 , gβ

1 , gδ
1, {gxi

1 }, {g
xit(x)

δ
1 }, {g

βui(x) + αvi(x) + wi(x)
γ

1 }
i≤ℓ

, {g
βui(x) + αvi(x) + wi(x)

δ
1 }

i≥ℓ
, gβ

2 , gγ
2, gδ

2, {gxi

2 })
Prove(σ, ϕ = (a1, …, aℓ), w = (aℓ+1, …, am)) r, s ← ℤp π = (gA

1 , gB
2 , gC

1)
𝐴 = 𝛼 + ∑ 𝑎𝑖𝑢𝑖(𝑥) + 𝑟𝛿 𝐵 = 𝛽 + ∑ 𝑎𝑖𝑣𝑖(𝑥) + 𝑠𝛿

𝐶 = ∑
𝑖>ℓ

𝑎𝑖
𝛽𝑢𝑖(𝑥) + 𝛼𝑣𝑖(𝑥) + 𝑤𝑖(𝑥)

𝛿
+

h(𝑥)𝑡(𝑥)
𝛿

+ 𝐴𝑠 + 𝑟𝐵 − 𝑟𝑠𝛿

Verify(σ, ϕ = (a1, …, aℓ), π) ϕ ∈ ℤℓ
p and π ∈ 𝔾1 × 𝔾2 × 𝔾1

e (gA
1 , gB

2) = e (gα
1 , gβ

2) ⋅ e (g ∑i≤ℓ ai
βui(x) + αvi(x) + wi(x)

γ
1 , gγ

2) ⋅ e (gC
1 , gδ

2)

