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Agenda

• Why zero-knowledge proofs are useful 
• Definitions: setup, statements, security 
• Sigma-protocols: a common type of zk-proofs 
• Efficiency: effortless verification of complex 

statements!
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Privacy and verifiability 

  

       Hedge fund   Investor

No!  
It is a trade secret. 

Did I lose all my money? 
Show me the current 

portfolio! 



Zero-knowledge proof system

    Statement 

  Prover    Verifier

Witness

√

Soundness: 
Statement is true

Zero knowledge: 
Nothing but truth revealed



Zero-knowledge proofs

• Completeness 
– Prover can convince verifier when statement is true 

• Soundness 
– Cannot convince verifier when statement is false 

• Zero knowledge 
– No leakage of information (except truth of statement) 

even if interacting with a cheating verifier
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Internet voting

 Voter    Election authorities

 Ciphertext

Vote Encrypts vote to 
keep it private

Tally without decrypting 
individual votes
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Election fraud

 Voter    Election authorities

 Ciphertext

Not Bob Encrypts -100 
votes for Bob

Is the encrypted 
vote valid?
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Zero-knowledge proof to prevent cheating

 Voter    Election authorities

 Ciphertext

Soundness: 
Vote is valid

Zero-knowledge 
proof for valid 
vote encrypted

Zero knowledge: 
Vote is secret
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Preventing deviation (active attacks) by 
keeping participants honest

  Alice    Bob

Yes, here is a zero-
knowledge proof that 
everything is correct 

Did you follow the 
protocol honestly 
without deviation?



Zero-knowledge proofs ensure compliance
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Problems typically arise when 
attackers deviate from the 
protocol (active attack)

Zero-knowledge proofs prevent 
deviation and give security against 
active attacks



P and NP
• A language  is a set of instances 
• Languages in P can be efficiently decided 

• Definition:  is in NP if there is a polynomial time decision procedure to tell for any 
instance  whether the statement  is true or false 

• Examples 
• Instance:  

Statement:  
• Instance: fast program P, input, output 

Statement: P(input) = output  
• Languages in NP can be efficiently decided with advice (a witness) 

• Definition:   is in NP if there is an polynomial time decidable relation   such 
that  if and only if there exists a witness  such that  

• Examples 
• Instance:  

Statement: there are primes  such that  
Witness:  

• Instance: fast program P, output 
Statement: these exists input such that P(input) = output 
Witness: input

𝐿

𝐿
ϕ ϕ ∈ L

n, p, q
n = pq

𝐿 RL = {(ϕ, w)}
ϕ ∈ L w (ϕ, w) ∈ RL

n
p, q n = pq

p, q



P vs NP
• Every language in P is also in NP 

• With relation  

• Many believe P  NP but we do not know 
• Millenium prize problem 

• There are NP-complete languages  

• For any P-language L the statement  can be reduced to an equivalent 
statement  in polynomial time 

• Efficient reduction   
such that  if and only if  

• For most well-known examples of NP-complete languages we have efficient 
translations to corresponding witnesses 

• Efficient reduction   
such that  if and only if  

• If you have a zero-knowledge proof system for an NP-complete language, then you 
have zero-knowledge proofs for all languages in NP

RL = {(ϕ, w) |ϕ ∈ L, w = empty}
≠

L′ 

ϕ ∈ L
ϕ′ ∈ L′ 

ϕ ↦ ϕ′ 

ϕ′ ∈ L′ ϕ ∈ L

(ϕ, w) ↦ w′ 

(ϕ, w) ∈ RL (ϕ′ , w′ ) ∈ RL′ 



Statements

• Statements are  for a given NP-language  

• Prover knows witness  such that  
– But prover wants to keep the witness secret!

ϕ ∈ L 𝐿
𝑤 (ϕ, w) ∈ RL
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Circuit SAT

 

  SAT
(𝑥1 ∧ 𝑥2 ∧ ¬𝑥3) ∨ (𝑥2 ∧ x4 ∧ 𝑥5)

Hamiltonian 
path exists

Encrypted 
valid vote



• The prover and verifier operate in a context; they may have a predefined setup 
• Examples 

• A prime order group  where it is hard to compute discrete logarithms 
and one or more generators  for the group 

• A description of a hash function  
• A common reference string (CRS) from a trusted source 

• Uniformly random reference string 
• Structured reference string  

• Nothing or just a security parameter  to indicate desired security level

𝔾
g, h

Hash : {0,1}* → {0,1}k

λ

Setup

   1   1   1   1   1    1    1    1    0    1



Statements

• We consider efficiently decidable ternary relations  containing 
triples  

– Setup    

– Instance  

– Witness  

• A statement is specified by a relation , a setup  and an instance 
, and claims there exists a witness  such that  
– We write such a statement as 

𝑅
(𝜎,  𝜙, 𝑤)

𝜎
𝜙
𝑤

𝑅 𝜎
𝜙 𝑤 (σ, ϕ, w) ∈ R

𝜙 ∈ 𝐿𝜎
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Standard binary NP relation is just the 
special case where  ignores 𝑅 𝜎



Syntax

• A proof system for a relation  consists of three 
probabilistic, stateful algorithms 

•
– Given security parameter  generate setup  

•
– Prover and verifier interact and after a number of 

rounds stop with the verifier outputting a decision

𝑅

Setup(𝜆) → 𝜎
𝜆 𝜎

⟨Prove(𝜎, 𝜙, 𝑤); Verify(𝜎, 𝜙)⟩ → accept/reject
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Completeness

    Setup, statement 
Witness

• Perfect completeness: an honest prover always convinces an honest verifier if the setup 
is honestly generated and the statement is true 

•  
• Statistical completeness: there is overwhelming probability (even for a worst-case true 

statement made by an unbounded adversary) an honest prover will convince an honest 
verifier 

•  
• Computational completeness: there may exist worst case true statements where an 

honest prover fails to reliably convince an honest verifier but they’re hard to find (bounded 
adversary) 

•

Pr[Setup(λ) → σ : for all (ϕ, w) ∈ Rσ ⟨Prove(σ, ϕ, w); Verify(σ, ϕ)⟩ → accept] = 1

Pr[Setup(λ) → σ; Adversary(σ) → (ϕ, w) ∈ Rσ : ⟨Prove(σ, ϕ, w); Verify(σ, ϕ)⟩ → accept] ≈ 1

Pr[Setup(λ) → σ; Adversary(σ) → (ϕ, w) ∈ Rσ : ⟨Prove(σ, ϕ, w); Verify(σ, ϕ)⟩ → accept] ≈ 1



Soundness

    Setup, statement 

• Perfect soundness: a cheating prover never convinces an honest verifier of a false 
statement (if the setup is honestly generated) 

•  
• Statistical completeness: a cheating prover is unlikely to convince an honest 

verifier (even with infinite computing power) 
•  

• Computational completeness: a computationally bounded cheating prover is 
unlikely to fool an honest verifier 

•

Pr[Setup(λ) → σ : for all ϕ ∉ Lσ ⟨Adversary(σ, ϕ); Verify(σ, ϕ)⟩ → accept] = 0

Pr[Setup(λ) → σ : for all ϕ ∉ Lσ ⟨Adversary(σ, ϕ); Verify(σ, ϕ)⟩ → accept] ≈ 0

Pr[Setup(λ) → σ; Adversary(σ) → ϕ ∉ Lσ : ⟨Adversary; Verify(σ, ϕ)⟩ → accept] ≈ 0

Sometimes people distinguish 
Proof = perfect or statistical soundness 
Argument = computational soundness



Proofs of knowledge

• Informal definition: the prover “knows” a witness 
• Recall the earlier example 

• Instance:  

• Statement: there exists primes  such that  

• A proof of membership just demonstrates  has two prime factors 
• Maybe nobody knows them, maybe easy to determine number of factors 

• Knowledge soundness: a proof of knowledge demonstrates we could 
extract  and  from the prover and write them down 
 
 
 
 
 
 

n
p, q n = pq

n

p q

19

π

Amazing,  is one of 
the RSA challenges!

n
I know the factorisation of n



Zero knowledge

• Zero knowledge: 
– The proof only reveals the statement is true, it does not 

reveal anything else 
• Defined by simulation: 

– The verifier could have simulated the proof without 
knowing the prover’s witness

𝜙

𝜙 ∈ 𝐿𝜎



Zero knowledge

• Many variations of simulation, here’s an example of how to 
define a simulator 

•
– Given security parameter, returns simulated setup together with a 

simulation trapdoor 

•
– Interactive algorithm SimProve does not know the witness, but 

instead uses knowledge of trapdoor to simulate the interaction 
– Cannot leak information about witness

SimSetup(𝜆) → (𝜎, 𝜏)

⟨SimProve(𝜎, 𝜙, 𝜏); Verify(𝜎, 𝜙)⟩ → accept/reject
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The simulator needs some extra 
power to simulate. If you could 
simulate without extra power, 
you could break soundness!



Indistinguishability between real proofs and simulated proofs
 Pr[Real proof : guess = real] ≈ Pr[Simulation : guess = real]

guess

guess

Zero knowledge

𝑤

𝜏

True statement 𝜙 ∈ 𝐿𝜎

Real/simulated setup 𝜎



Zero knowledge

• Zero knowledge can be 
• Perfect: the simulation is identical to a real proof (even for a worst 

case true statement) 
• Statistical: the simulation is hard to tell apart from a real proof (even 

to an evil verifier with unlimited computational resources) 
• Computational: the simulation is hard to tell apart from a real proof 

for a computationally bounded adversary 
• Other useful but weaker definitions 

• Witness hiding: the proof does not help you to compute the witness 
• Witness indistinguishability: the proof does not help you tell which 

out of several possible witnesses the prover has 
• Honest verifier zero knowledge (HVZK): if the verifier creates 

honest challenges according to the proof system, the proof leaks 
nothing about the witness
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Performance parameters

• Most common measures of efficiency 
– Communication (bits) 
– Prover’s computation (seconds) 
– Verifier’s computation (seconds) 
– Round complexity (number of messages) 

• Depending on use case other measures may be important 
– Size of the setup if using a common reference string 
– Memory consumption 
– Parallelisation 
– Energy consumption



Round complexity

• Interactive zero-knowledge proof (ZK proof) 

• Non-interactive zero-knowledge proof (NIZK proof)

25
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Fiat-Shamir heuristic

• An interactive proof system is public coin if the 
verifier only sends uniformly random challenges 

• If these challenges are big enough (e.g. random 
256-bit strings) then one can use the Fiat-Shamir 
heuristic to make the proof system non-interactive 

• Prover computes transcript where the verifier’s 
challenges are replaced by message digests

26
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Ultimate performance: zk-SNARK

• Succinct non-interactive argument of knowledge (SNARK) 
• Proof system with succinct proofs (a few kbits) 
• Verification may be very efficient 
• Useful for languages with complex statements requiring a lot of 

computation to verify 
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π

Thanks, it only took 
me a second to verify 

your proof!

Here’s the last blockhash of 
Bitcoin and a proof everything is the 

result of a valid computation



Succinctness

• SNARKs are also interesting for languages in P 
• Even if the verifier could decide the statement in polynomial time it 

may be cheaper to verify a succinct proof 
• For such use cases you only need completeness and soundness 

• People mix the terms SNARK and zk-SNARK 
• Use zk-SNARK if you really care about zero knowledge 
• Use SNARK if you do not care about zero knowledge 

• Rule of thumb for research 
• A succinct proof is small and cannot leak much information 
• Usually it is hard to get soundness 
• Usually it is easy to to get or to add zero knowledge
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Sigma-protocols

   Statement   ϕ ∈ L

Witness  𝑤
(ϕ, w) ∈ RL   𝑎

  x ← Random

  𝑧

 Verify(ϕ, a, x, z) → accept /reject



Setup: prime order groups

• Let  be a prime and  the integers modulo  

• Let  be a cyclic group of size  

• Let  be a group element in  

• For all   

• For all  

• The discrete logarithm problem is given  to find  

• The DDH problem is given  to guess if 

p ℤp p
𝔾 p
g 𝔾

a, b ∈ ℤp : ga ⋅ gb = ga+b

a, b ∈ ℤp : (ga)b = gab

g, gα α
g, h, gα, hβ α = β
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Sigma-protocol for DDH tuples 

Witness  α
u = gα, v = hα

a, b

  x ← ℤp

  𝑧

Accept if and only if

uxa = gz and vxb = hz

r ← ℤp
a = gr

b = hr

z = αx + r
(mod p)

   Instance   g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1



Perfect completeness

Witness  α
u = gα, v = hα

a, b

  x ← ℤp

  𝑧
Accept if and only if

uxa = gz and vxb = hz

r ← ℤp
a = gr

b = hr

z = αx + r
(mod p) uxa = (gα)xgr = gαx+r = gz

vxb = (hα)xhr = hαx+r = hz

   Instance   g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1



Perfect honest verifier zero knowledge

a, b

  x

  𝑧
Accept if and only if

uxa = gz and vxb = hz

Simulation 

 
 

 

x ← ℤp
z ← ℤp
a ← gzu−x

b ← hzv−x

Both in simulation and in real proof  are random and  
uniquely define , so simulated proof looks like real proof 

x, z
a, b

   Instance   g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1



Statistical soundness
   Instance   g, h, u, v ∈ 𝔾, g ≠ 1,h ≠ 1

a, b
  x ← ℤp

  𝑧 uxa = gz and vxb = hz

False statement with  
We have for some  that  
Now the prover gets a random challenge  
Since  the prover needs  
Since  the prover needs  
Unlikely random  hits the intersection of two distinct lines 

u = gα, v = hβ, α ≠ β
r, s a = gr, b = hs

x
uxa = gz z = αx + r
vxb = gz z = βx + s

x



Sigma-protocol for discrete logarithm 

   Instance   g, u ∈ 𝔾, g ≠ 1
Witness  α
u = gα

a

  x ← ℤp

  𝑧

Accept if uxa = gz

r ← ℤp
a = gr

z = αx + r
(mod p)



Exercise

• Verify the Sigma protocol for discrete logarithm is 
(perfect) complete 

• Show the Sigma protocol for discrete logarithm is 
(perfect) honest verifier zero-knowledge 

• Show the Sigma protocol for discrete logarithm has 
(statistical) knowledge soundness 
• Hint: Imagine the prover after sending  is able to 

answer two random challenges  with correct 
a

x, x′ z, z′ 
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Perfect completeness

   Instance   g, u ∈ 𝔾, g ≠ 1
Witness  α
u = gα

a

  x ← ℤp

  𝑧 Accept if uxa = gz

r ← ℤp
a = gr

z = αx + r
(mod p) uxa = (gα)xgr = gαx+r = gz



Perfect honest verifier zero knowledge

   Instance   g, u ∈ 𝔾, g ≠ 1

a

  x

  𝑧
Accept if uxa = gz

Simulation 

 
 

 

x ← ℤp
z ← ℤp
a ← gzu−x

Both in simulation and in real proof  are random and  
uniquely define  so simulated proof looks like real proof 

x, z
a



Perfect soundness!?

   Instance  g, u ∈ 𝔾, g ≠ 1
a

  x ← ℤp

  𝑧 Accept if uxa = gz

 
Since  is a generator for  it is clear that   
for some . So the prover cannot cheat! 
Actually, the Sigma protocol for membership in the  
language is silly, you did not need a Sigma protocol proof  
to tell the verifier that a discrete logarithm exists 

g 𝔾 u = gα

α ∈ ℤp



Special soundness

If the prover can answer two distinct challenges then possible to 
efficiently compute witness
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  𝑎

  𝑥 ← 𝑆

  𝑧

  𝑥′ ← 𝑆

  𝑧′ 

 Extract(ϕ, x, x, x′ , z′ ) → w
Strategy: clone the prover’s state after having sent  and try many challenges. 
The prover “knows”  because we can extract the witness from this state. 
This is also known as rewinding - run the proof, rewind back to a previous state, 
run again…

a
w



Statistical knowledge soundness

   Instance  g, u ∈ 𝔾, g ≠ 1
a

  x ← ℤp

  𝑧 Accept if uxa = gz

Suppose the prover has probability  of convincing the verifier after 
having sent . If  is negligibly small, the verifier is unlikely to  
accept. If  is significant, we can rewind and try many  
until we have answers  to two challenges    
This gives us  
Division of the two equations gives us  
So  and 

ε
a ε

ε x ← ℤp
z, z′ x ≠ x′ 

uxa = gz and ux′ a = gz′ 

uxa /(ux′ a) = ux−x′ = gz−z′ 

u = g(z−z′ )/(x−x′ ) α = (z − z′ )/(x − x′ )



Fiat-Shamir heuristic

Non-interactive zero-knowledge (NIZK) argument in the random oracle 
model, where  is modelled as random function to  
This justifies the honest verifier zero-knowledge notion, the verifier is 
“honest” because the verifier is a random oracle!

Hash 𝑆
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  𝑎

  𝑥 ← 𝑆

  𝑧

  x = Hash(ϕ, a)

  𝑧

  𝑎

   Statement   ϕ ∈ L



Arithmetic circuit satisfiability

wout

𝑤1 𝑤2

𝑤3

Arithmetic circuit satisfiability for 
a circuit consisting of addition 
and multiplication gates over . 
- Instance: prime  
- Witness: inputs to make the 
circuit output 0 

Variation: some of the wires are 
fixed to constants specified in 
the instance, e.g.,  

Popular type of statement 
- NP-complete 
- Natural, lots of cryptography 

use finite field arithmetic

ℤp
p, circuit C

w2 = 4



Commitment scheme

• Hiding 
• The commitment does not reveal information about the message 

• Binding 
•  It is infeasible to open a commitment to two different messages



Pedersen commitments

• Key generation (setup) 
– Pick a group  of prime order  with random generators  and 

. Commitment key . 

• Commitment 
– Given  pick  and compute  

• The opening of the commitment is  
– The receiver can recompute to see the opening is valid 

• Exercise 
– Verify the commitment scheme is homomorphic, i.e.,  

 
– Argue the commitment scheme is perfectly hiding

𝔾 𝑝 𝑔
h ck = (𝔾, p, g, h)

m ∈ ℤp r ← ℤp c = gmhr

(m; r)

com𝑐𝑘(𝑚; 𝑟) ⋅ com𝑐𝑘(𝑚′ ; 𝑟′ ) = com𝑐𝑘(𝑚 + 𝑚′ ; 𝑟 + 𝑟′ )

Broken by quantum computers; 
but other homomorphic 
commitment schemes exist



Binding

• Exercise 
– Show if the adversary can find two different openings of 

a Pedersen commitment such that , 
then the adversary can break the discrete logarithm 
problem and find  such that 

c = gmhr = gm′ hr′ 

τ h = gτ

𝑐𝑘 ← KeyGen(𝜆)

(𝑚, 𝑟),  (𝑚′ , 𝑟′ )

Pr[com𝑐𝑘(𝑚; 𝑟) = com𝑐𝑘(𝑚′ ; 𝑟′ ) 
𝑚 ≠ 𝑚′ ] ≈ 0



Σ-protocol for knowledge of an opening

• Setup:  

• Instance:  

• Witness:  such that  
 

• Exercise 
– Show it is complete, special sound and honest verifier zero knowledge 
– Modify the protocol to prove the committed  is 0

ck = (𝔾, p, g, h)
c ∈ 𝔾
(m; r) c = comck(m; r)

𝑚

𝑓, 𝑧

x ← ℤp

𝑎 
 

  
 

b, s ← ℤp
a = comck(b; s)

𝑓 = 𝑚𝑥 + 𝑏
𝑧 = 𝑟𝑥 + 𝑠

 Accept if  
𝑐𝑥𝑎 = com𝑐𝑘(𝑓; 𝑧)



Sigma-protocol for arithmetic circuit over ℤp

𝑣

𝑤1 𝑤2

𝑤3

Strategy 
- Commit to the wires 
- For public values, commit in 

a directly verifiable manner, 
e.g.,  

- Use homomorphism to 
handle addition gates 

 
- Use Sigma-protocols to 

prove the committed values 
satisfy multiplication gates, 
e.g., 

com(v; 0)

com(w1) ⋅ com(w2) → com(w3)

𝑣 = 𝑤2 ⋅ 𝑤3



Addition gates

• Consider a gate saying  
• Given commitments  

  and  
compute the commitment to  as 
         
which by the homomorphic property of the commitment 
scheme automatically gives a verifiable commitment to 
       

𝑤3 = 𝑤1 + 𝑤2

𝑐1 = com𝑐𝑘(𝑤1; 𝑟1) 𝑐2 = com𝑐𝑘(𝑤2; 𝑟2)
𝑤3

𝑐3 = 𝑐1 ⋅ 𝑐2

𝑤3 = 𝑤1 + 𝑤2



Sigma-protocol for multiplication gates

• Instance:  

• Witness:  satisfying 
 

𝑐1, 𝑐2, 𝑐3
w1, r1, w2, r2, w3, r3

w3 = w1w2 c1 = com(w1)
c2 = com(w2) c3 = com(w3)

f, z1, z2

x ← ℤp

a, b  
  
 

b, s, t ← ℤp
a = com(r; s)
b = com(−w2r; t)

 

f = xw1 + r
z1 = xr1 + s
z2 = fr2 − xr3 + t

Accept if 
  
 
cx

1a = com( f; z1)
c f

2c−x
3 b = com(0; z2)

Sketch of soundness 
 f = w1x + r

fw2 − xw3 + β = (w1w2 − w3)x + (rw2 + β) = 0



Cost to prove arithmetic circuit satisfiability

𝑣

𝑤1 𝑤2

𝑤3

- Commit to the inputs to the circuit and 
inputs to multiplication gates 

- A commitment per wire 
- For public values, commit in a directly 

verifiable manner, e.g.,  
- Free 

- Use homomorphism to handle addition 
gates 

 
- Free 

- Use Sigma-protocols to prove the 
committed values satisfy multiplication 
gates, e.g.,  

- A few group and field elements per 
multiplication gate 

- In total for an -gate circuit 
-  group and field elements

com(v; 0)

com(w1) ⋅ com(w2) → com(w3)

𝑣 = 𝑤2 ⋅ 𝑤3

N
O(N )



Σ-protocol for knowledge of many openings
• Setup:  

• Instance:  

• Witness: openings  such that  
 
 
 

• Sketch of knowledge soundness 
– For  this is exactly as before, if the prover can answer two distinct challenges  

we can combine the two resulting verification equations to open  

– For larger  if the prover can answer  distinct challenges  we can for each 
 combine the  verification equations to find an opening

ck = (𝔾, p, g, h)
c1, …, ct ∈ 𝔾

(mi; ri) ci = com(mi; ri)

t = 1 x, x′ 
c1

t t + 1 x, x′ , x′ ′ , . . .
ci t + 1

𝑓, 𝑧

x ← ℤp

𝑎
 

 

 
 

b, s ← ℤp
a = com(b; s)

f = b + ∑ ximi

z = s + ∑ xiri

 Accept if  
a∏cxi

i = com( f; z)

Communication 
1  +  
for instance size 

𝔾 2 ℤp
t 𝔾



Generalized Pedersen commitment

• Key generation (setup) 
– Pick a group  of prime order  with random generators  and 

. Commitment key . 

• Commitment 
– Given  pick  and let  

– The opening of the commitment is  

• Properties 
– Perfectly hiding 
– Computationally binding under discrete log assumption 
– Homomorphic 

  

𝔾 𝑝 h
𝑔1, …, 𝑔𝑛 ck = (𝔾, p, h, g1, …, gn)

m1, …, mn ∈ ℤp r ← ℤp c = hr∏gmi
i

(𝑚1, …, 𝑚𝑛, 𝑟)

com(→𝑎 ; 𝑟) ⋅ com(→
𝑏 ; 𝑠) = com(→𝑎 +

→
𝑏 ; 𝑟 + 𝑠)



Σ-protocol for knowledge of many openings
• Setup:  

• Instance:  

• Witness: openings  such that  
 
 
 

• Sketch of knowledge soundness 
– For larger  if the prover can answer  distinct challenges  we can for 

each  combine the  verification equations to find an opening 

– This time each opening is a size  vector and some randomness

ck = (𝔾, p, h, g1, …, gn)
c1, …, ct ∈ 𝔾

( ⃗mi; ri) ci = com( ⃗mi; ri)

t t + 1 x, x′ , x′ ′ , . . .
ci t + 1

n

⃗f , z

x ← ℤp

𝑎
 

 

 
 

b⃗, s ← ℤp

a = com(b⃗; s)

⃗f = b⃗ + ∑ xi ⃗mi

z = s + ∑ xiri

 Accept if  
a∏cxi

i = com( ⃗f ; z)

Instance + proof size 
  +  

for witness size 
t + 1 𝔾 n + 2 ℤp

tn



Proofs of knowledge with sublinear 
communication

• This is a Sigma-protocol with sublinear communication 
• You can prove knowledge of  field elements using only  

elements to describe the instance and send messages in the proof 
• If we set  we can prove knowledge of  field elements using only 

 communication! 
• If you use the Fiat-Shamir heuristic it becomes a non-interactive proof 

system. I.e., we have a zk-SNARK for proving knowledge of many field 
elements at once, where the proof size is much smaller than the witness 

• And the computation to verify the proof is only  exponentiations, 
which is easier to compute than if you had the whole witness and 
needed to verify the openings directly

tn O(t + n)

t ≈ n N
O( N )

O( N )
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Proofs of arithmetic circuit satisfiability
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Rounds Prover Verifier Comm.
Cramer-Damgård 1997 3 6N expo 6N expo 11N elem 

Groth 2009 7 6N/log N expo O(N) mult 16√N elem

Bootle-Cerulli-Chaidos-
Ghadafi-Groth 2016

2 log N + 1 12N expo 4N expo 6 log N elem

• Ideas behind the constructions 
• Commit to wires with Pedersen commitments, prove the wires respect the gates 
• Commit with √N-wide Pedersen commitments, prove the wires respect the gates 
• Start with N-wide generalised Pedersen commitments, don’t show any N-wide 

openings but recursively prove the openings exist and are correct with less wide 
commitments 

• Bulletproofs [Bünz-Bootle-Boneh-Poelstra-Wuille-Maxwell17] is a popular and 
widely used proof system that builds on [BCCGG16]



Can proof for arithmetic circuit satisfiability 
be even smaller?

57

• There are zk-SNARKs with O(1)-sized proofs and you can get as low as 3 group elements 
[Groth10,Groth16] 

• Which means you can prove an arithmetic circuit with billions of gates is satisfiable 
using only a few hundred bytes to convince the verifier! 

• But the techniques are different; they rely on groups with pairings 
• Let  be a prime 

• Let  be cyclic groups of size  

• Let   be an efficiently computable bilinear map 

• If  are generators of the source groups  then  generates  

• For all  we have  
• In groups with pairings, not only do you have ‘additions and multiplication with a known 

constant’ in the exponent; now you also have ‘multiplication in the exponent’

p
𝔾1, 𝔾2, 𝔾T p
e : 𝔾1 × 𝔾2 → 𝔾T

g1, g2 𝔾1, 𝔾2 e(g1, g2) 𝔾T
a, b ∈ ℤp e(ga

1 , gb
2) = e(g1, g2)ab



Arithmetic circuit • Write each multiplication gate as a 
quadratic equation, here 

 
• In general arithmetic circuit can be 

written as a set of quadratic 
equations of the form 

 

    over variables        
    and by convention  
• A fixed arithmetic circuit defines an 

NP-language with statements 
 and witnesses 

(𝑎1 + 𝑎3) ⋅ 𝑎3 = 𝑎2

∑ 𝑎𝑖𝑢𝑖 ⋅ ∑ 𝑎𝑖𝑣𝑖 = ∑ 𝑎𝑖𝑤𝑖

𝑎1, …, 𝑎𝑚
𝑎0 = 1

(𝑎1, …, 𝑎ℓ)
(𝑎ℓ+1, …, 𝑎𝑚)

𝑎2

𝑎1 𝑎3

𝑎4



zk-SNARK for the circuit being satisfiable for 
an instance (a1, …, am)

• Common reference string generation: the circuit defines what is called a quadratic arithmetic program 
(QAP) consisting of polynomials . Pick secret  and 
publish  

 

• : pick  and return  where 

• : check  and the pairing 
product equation 

          

{ui(x)}, {vi(x)}, {wi(x)}, t(x) α, β, γ, δ, x ← ℤp

σ = (gα
1 , gβ

1 , gδ
1, {gxi

1 }, {g
xit(x)

δ
1 }, {g

βui(x) + αvi(x) + wi(x)
γ

1 }
i≤ℓ

, {g
βui(x) + αvi(x) + wi(x)

δ
1 }

i≥ℓ
, gβ

2 , gγ
2, gδ

2, {gxi

2 })
Prove(σ, ϕ = (a1, …, aℓ), w = (aℓ+1, …, am)) r, s ← ℤp π = (gA

1 , gB
2 , gC

1 )
𝐴 = 𝛼 + ∑ 𝑎𝑖𝑢𝑖(𝑥) + 𝑟𝛿                              𝐵 = 𝛽 + ∑ 𝑎𝑖𝑣𝑖(𝑥) + 𝑠𝛿

𝐶 = ∑
𝑖>ℓ

𝑎𝑖
𝛽𝑢𝑖(𝑥) + 𝛼𝑣𝑖(𝑥) + 𝑤𝑖(𝑥)

𝛿
+

h(𝑥)𝑡(𝑥)
𝛿

+ 𝐴𝑠 + 𝑟𝐵 − 𝑟𝑠𝛿

Verify(σ, ϕ = (a1, …, aℓ), π) ϕ ∈ ℤℓ
p and π ∈ 𝔾1 × 𝔾2 × 𝔾1

e (gA
1 , gB

2 ) = e (gα
1 , gβ

2 ) ⋅ e (g ∑i≤ℓ ai
βui(x) + αvi(x) + wi(x)

γ
1 , gγ

2) ⋅ e (gC
1 , gδ

2)


