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Modern cryptography
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Modern cryptography




COED - Fully homomorphic encryption

Homomorphic encryption scheme allows computation on ciphertexts.
It support three (main) operations
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COED - Fully homomorphic encryption

In FHE the parties encrypt their data, a server computes the function in the encrypted domain,
a designated party gets the output
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e Still rather slow in computation
¢ Relatively cheap in communication

» Only possible (currently) for simple functions



FHE - Recent developments

“I don’t think we’ll see anyone using
Gentry’s solution in our lifetimes.”

Still slow in computation
Relatively cheap in communication
Only possible (currently) for simple functions

* HE is getting faster 8 times every year

e.g. Bootstrapping time: the most time-consuming operation in HE
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COED - Secure multiparty computation

* While FHE allows computation to be performed on encrypted data held on a single
server, MPC allows computation on data that is split across multiple servers

* MPCis well researched subfield of cryptography

* Research began in the late 1980s
* Thousands of research papers
* MPC is now a very active applied area of research



COED - Secure multiparty computation

Secure function evaluation: f(z1, 2,23, 24, x5)
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* Correctness: Parties obtain the correct output

* Privacy: Only the output is learned (and nothing else)
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COED - Secure multiparty computation

Secure function evaluation: f(z1, 22, 23,24, 25)
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e Fast computation
e Expensive in communication
¢ Enables a number of applications
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COED - Applications

The classic millionaires’ problem

Joint genome studies

Studies on linked databases
Outsourcing computation to the cloud
Collaborative network anomaly detection
Financial reporting in a consortium
Securing cryptographic keys

Statistics
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Secure multiparty computation
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Secure multiparty computation
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MPC dimensions

Computational model: Boolean/arithmetic circuit

Adversarial behaviour:
e Passive (semi-honest), i.e. adversary correctly running the protocol cannot learn anything

» Active (malicious), i.e. adversary arbitrary deviating from the protocol cannot learn
anything

Number of corruptions: corruption threshold, honest/dishonest majority
Efficiency: round/communication/computation complexity

Security: information-theoretic, statistical, computational
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MPC with a honest majority - Feasibility

Let n be the number of parties and ¢ the number of parties that can be corrupt

e For t < n/3 secure multiparty protocols with guaranteed output delivery can be achieved for any
function with computational security assuming a synchronous point-to-point network with
authenticated channels and with information-theoretic security assuming the channels are also
private.

e For t < n/2 secure multiparty protocols with guaranteed output delivery can be achieved for any
function with computational and information-theoretic security, assuming that the parties also
have access to a broadcast channel.
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MPC with a dishonest majority - Feasibility

e For t > n/2 computationally secure multiparty protocols without guaranteed output
delivery can be achieved

However, we can still have very efficient protocols
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The two main paradigms for secure MPC

GMW

* Interaction at every gate (LSSS)

* Support both arithmetic and Boolean
computation

* Very low bandwidth, good in the LAN
setting

* Number of rounds depends on
circuit depth

YAO

* Garbled circuit
* Better suited for Boolean circuits
* Requires significant bandwidth, faster
on slower networks, like the Internet

* Small constant number of rounds,
independent of circuit depth
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LSSS
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Reed-Solomon Codes

Consider the set of polynomials of degree less than or equal to ¢ over F,
P={fo+fi- X+ +fi-X':fi €F,}.
This defines the set of code-words in our code, equal to ¢**!.

The actual code words are given by

C={(f(1),f(2),..., f(n)): f € P}.

Think of f as the message and ¢ € C as the codeword.
e There is redundancy in this representation
e (t+1)-log, q bits of information are represented by n - log, ¢ bits.
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Reed-Solomon Codes
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Figure: Cubic function evaluated at seven points
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LSSS with an honest majority - SSS

We can use Reed—Solomon codes to define a secret sharing scheme.
A Reed-Solomon code is defined by two integers (n,t) with ¢ < n.

We map secrets s € [, to the set P by associating a polynomial with the secret given by the
constant term

For n parties we then distribute the shares as the elements of the code word

e So party i gets s; = f(i) for 1 <i <m.

Secret reconstruction is via
n

s f(0) = si-6:(0).

i=1

Actually any ¢ + 1 parties can recover the secret.
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Reed-Solomon Codes: Data Recovery

This can be done via Lagrange interpolation

Take the values

(X))« ] <Xj), 1<i<n.

-
1<) <n,i#j J

Note that we have the following properties, for all 7,
e 0;(1) =1
e 0;(7)=0,ifi#j.
e degdi(X)=n—1.

Lagrange interpolation takes the values s; and computes

f(X)<—ZSi-5i(X)-
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Shamir secret sharing

A set of honest parties do not reveal their shares to anyone unless they want to.

A passive adversary controlling a subset A wants to learn the secret from the honest parties.

e This means t > |A| to ensure privacy.
e Shamir is said to be a threshold secret sharing scheme

o If |A| <t the adversary learns nothing at all about the secret.

The number of honest parties must be able to recover the secret, so we have

n—|Al >t >|A]

|A| < n/2.
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Shamir secret sharing

An active adversary is one which will lie about its shares

¢ In order for the honest parties to recover the wrong secret
To protect against this we use the error correcting property of Reed—Solomon codes

Reed-Solomon code. The RS code is a linear [n,t + 1,n — t]-code over .
- The code can always detect up ton —t — 1 errors

- There exists an efficient decoding algorithm that corrects up to
errors.

n—t—1
2
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Shamir secret sharing

An active adversary is one which will lie about its shares

¢ In order for the honest parties to recover the wrong secret
To protect against this we use the error correcting property of Reed—Solomon codes.

Reed-Solomon code. The RS code is a linear [n,t + 1,n — t]-code over .
- The code can always detect up ton —t — 1 errors

- There exists an efficient decoding algorithm that corrects up to "‘5‘1

€rrors.

e If the adversary is of size |A| < (n —t — 1)/2 we can recover the secret i.e.

t<n—2-]A

» To maintain security we require |A| <, i.e.
|A] <n/3
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Shamir secret sharing

If we receive n shares and ¢t < n/2 we know if someone is lying, and hence can abort.
« If we do not abort (we do not detect any errors), then we can recover the secret

¢ If we abort we do not know who cheated.

If we receive n shares and ¢t < n/3 we can know if someone is lying, but we do not need to
abort.

¢ We use the error-correction property to recover the correct shares for everyone, work out
who is cheating, and recover the secret.
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Shamir secret sharing

If we receive only t 4+ 1 shares we can reconstruct a secret, but not necessarily the correct one.

e We can also reconstruct the shares which are consistent for all parties who did not send us
their shares.

In this case, if we had a lot of such openings to check,
e For each opening reconstruct the share vector
e Hash the share vector into a running hash function
e Compare the hash value with all other parties later on.

Thus if we are opening a lot of values, each party only needs to communicate with ¢ + 1 other
parties, and not all n.
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Honest-majority MPC with Shamir’s secret sharing scheme

Input: The input data (i, (r), r) is trivial:
e Party i generates an r value and distributed it to all parties
e If they distribute something invalid, then this will be detected later.

e If they distribute something not equal to r, then only they are affected in the end:

— Either they will input an incorrect value into the MPC engine
— Or they will not get the output they expect

Linear gate: Locally (Shamir's secret sharing is linear)

a-(s)+(ry="(a-s+r)

Non-linear gate: 777
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Schur Product

e Suppose each party 7 holds a vector of shares s; for each secret s
— In Shamir this a single value.

e The Schur product of two such sharings

(s1,...,8,) and (s},...,s,)

is the local tensor of each parties
S; @ s,

e s; ®s! is a vector of length n- (n+1)/2

¢ In the case of Shamir this just means locally multiply the shares together to get one share.
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Honest-majority MPC with Shamir’s secret sharing scheme

e Given s and s’ shared by polynomials f and f’ of degree t.
e The Schur product held by party i is f (i) - f/(7).

» 5.5’ is shared by the polynomial g = f - f’ of degree 2 -t
* The shares of g are g(i) = f(i) - f'(i).

» Since 2 -t < n the Lagrange coefficients give us how to express s - s" in terms of a linear
combination of the g(i).
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Multiplication Shamir

e We have s; = f(i) and s, = f’(¢) sharing s and &'.

e Parties form the Schur products locally 5; = s; - ..

We know, as ¢t < n/2, that there exists \; such that

/

S-S :)\1‘/5\1+---+>\n'§n-

o Parties now compute u; = A; - 5;, so we actually have a full threshold sharing of the
product
5.8 =up+...+up.
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Multiplication Shamir

e Party i now creates a sharing of u; and sends the shares to each party.

That is
— Party ¢ generates a polynomial g;(X) of degree ¢ such that g;(0) = us;.
— Party ¢ sends party j the value g;(j).

The resulting sharing of u; we call (u;).

o All parties can then compute a Shamir sharing of degree t of the product s - s’ by
computing the linear function

(s8") = (u1) + ...+ (uy)

locally.
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Passive Multiplication Protocol

Maurer's protocol gives a passive multiplication protocol:

Step 1: Form the Schur product of the parties shares.
Step 2: Express the product as a sum of the local Schur products.
Step 3: Reshare the resulting full threshold sharing.

Step 4: Recombine the resulting shares locally.

In Step 3 an adversarial party could lie, resulting in a potentially invalid sharing, or a sharing of
the wrong value in the final output.
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Why it is not active secure?

e Need to check that the multiplication gates are correctly evaluated
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The dishonest-majority case

SPDZ setting:

Dishonest majority: up to n — 1 corruptions, requires computational assumption
Active security: Security with abort, no fairness

Arithmetic circuits: tipically IF,,, with large p, but can also handle Boolean circuits, rings
etc

What does ‘SPDZ’ stand for? [Damgéard, Pastro, Smart, Zakarias '12], there are many
subsequent works with improvements and variants
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MPC with preprocessing
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LSSS MPC - Notation

e Every secret values x € F in the computation is secret-shared among the parties.

e We consider an additive-secret sharing scheme

B

T3

T

=
el

such that 2 = >, x; and party P; holds the share z;.

e (x)-representation
¢ Note the values x is unknown to the parties

e To reconstruct the value x all the shares are needed
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LSSS - Linear computation

e The scheme is linear, so linear operations are local

() + (y) = (z +y)

e We can compute any linear function on shared values
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LSSS - Multiplication

- Input multiplication gate: (z) and (y)

random triple from preprocessing

(x-y) = ((r+a—a) - (y+b-10))
(x+a) (y+0b)—(y+0b):

%\)

masked and opened
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What if parties don't follow the protocol?
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What if parties don't follow the protocol?
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New online evaluation [DPSZ12, SPeeDZ])

e (z) = {xi}iep, such that 3. a; =z
o [z] = {(x),{a), (7)) }iep, such thaty =a -2 inF

1. Input values using [z]-representation

2. Evaluate the circuit gate by bate using the linearity of [-] and Beaver's trick for
multiplication, with openings!

3. Do a batch check of MACs

4. If the check passes, reconstruct the output opening the output values

LCheck MACs on opened values

40



Checking the openings
We need to check the MAC every time a value is opened
Check the MAC relation without revealing «

o A corrupt party P; sends x} = 2; + 9
¢ Each party reconstruct x + §

e Each party Pj, s; = a; - (z+6) — 5
¢ Parties compute ZZ si=alz+0)—y(z)=a-6

The check passes if ). s; = 0. If § # 0, the adversary has to guess «.

¢ Adversary wins with probability ‘Fil
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Implementing the trusted dealer - Preprocessing
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Preprocessing with homomorphic encryption

* Main goal of the preprocessing is to generate [a], [b], [ab] = []

We need a threshold homomorphic encryption scheme
€ = (KeyGen(-), Encpi(-), DistDecq(+), Evaly(+)) such that:
1. Homomorphic Operations: O(n) additions and 1 multiplication
2. KeyGen(1?*) returns a public key pk and a secret-shared private key (sk)

3. A distributed decryption protocol such that DistDecg (Enc(a)) returns either a or (a)
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Preprocessing with homomorphic encryption [DPSZ12]
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Preprocessing with homomorphic encryption [DPSZ12]

Encpr(a1), Encoc(br) Encpi(az), Encok(bz) Encpi(as),

| —

ADDITIVE HOMOMORPHISM Encpr(a),  Encp(b)

B
?‘ ‘] as, bs,
LELL

Encpi(b3)
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Preprocessing with homomorphic encryption [DPSZ12]

Encpi(a1), Encpi(br) Encpi(az), Encok(bz) Encpk(as),
ADDITIVE HOMOMORPHISM Encpi( a), Encpk (b)
!
!
!
<~
LOCAL COMPUTATION Enca(a - b)

Encpi(b3)
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Preprocessing with homomorphic encryption [DPSZ12]

Encpr(a1), Encoc(br) Encpi(az), Encok(bz) Encpi(as),
ADDITIVE HOMOMORPHISM Encpr(a),  Encp(b)
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Passive triple generation

1. P, samples a;, b;, ¢; and broadcasts Enc(a;), Enc(b;), Enc(c})

19 &9

2. All parties compute:
- Enc(a) =Y, Enc(a;)  Enc(b) =3, Enc(b;) Enc(c') =, Enc(c;)
— Enc(d) =Mult(Enc(a), Enc(b)) — Enc(c’)
— d = DistDec(d)

3. P; outputs a1, by, + d and each P; outputs a;, b;, ¢, i > 1

4. Add MACs with the same procedure
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Efficiency by batch computation [SV2011]

e Usually BGV (Brakerski et al. 2011) encryption scheme
o R = Z[X])/(® (X)), where deg(®,,(X)) = d(m) = N
* Ry, =R/pR =7Zp[X]/(®m (X)), m and p coprime

— @,,L(X)EHFT;(X) (mod p)

e Each F;(X) has degree d = ¢(m)/r = N/r

Ry = Zp[X]/(FL(X)) © - - @ Zp[X]/(F (X)) Z Fpa @ - --

R 4
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Batch computation

Z,[X]/(Fi(X)) Z,|X]/(Fr(X))

¢ We can have up to N isomorphisms
i s Lp[ X]/Fi(X) — Iy

= we can represent N plaintext elements of I}, as a single element in R,,.
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Active security

o Zero-knowledge proof of plaintext knowledge

— Ensure ciphertexts are correctly generated

— Whenever P; sends Enc(a;), prove knowledge of a; and randomness

e Triple verification
— Even with ZK proofs, may be additive errors in {(c) due to DistDec

— Sacrifice one triple, to check another
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Improvements (this is not exaustive)

o ZK: Needs to run in large batches for efficiency and are computationally expensive
(= 40%)
— Overdrive [KPR18] and TopGear [BCS19]

e Local distributed decryption: this works only for the 2-party case
(“Local rounding” of {(co + ¢15) gives a sharing of (m))

e Linear communication [GHM22]: this protocol is similar to SPDZ, except the step for
computing a verified sum, where it is shown a mechanism to amortize the cost over
multiple sums achieving linear communication when |C| > n.

Match the O(n) complexity of passive protocols.
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Yao’s Garbled Circuits
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Yao's garbled circuits

We consider the case of two party passively secure computation

We assume two parties who want to compute a function (y1,y2) = f(z1, z2)

e Party P; holds x; and wants to learn g

e Party P, holds x5 and wants to learn g9

Party P, does not want P, to learn x1, and vice versa.

The oldest and simplest way of achieving this is via Yao's Garbled Circuits

e Which are surprisingly fast these days

We first describe the circuit construction mechanism, then we will build a protocol.
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Garbled circuits: simple version

We take the function f are write it as a boolean circuit

AND

e

XOR

t\?

Our aim is to "encrypt” each gate.

NAND

52



Wire values

- Each wire w; in the circuit can have two values on it 0 or 1

We assign two (symmetric) keys kY and k! to each wire value on each wire.
- Every gate GG can be represented by a function with two input wires and one output wire

wi = G(w;, wj)

- Note: “NOT" gates can be “folded” into the following output gate.
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AND gate encryption

We go through an example of how to encrypt an AND gate

== o o8
g
— o o olS

= O = O
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AND gate encryption

When someone evaluates the gate we want them to learn the wire key

== o o8
S
— o o olS
x
Fo

= O = OlL=
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AND gate encryption

Now we encrypt this message with the wire keys associated to w; and w;.

* We assume an IND-CCA two key symmetric encryption function Ey \(m).

w; | wj | wg c
0 0 0 Ek?‘k?(kg)
0| 1] 0 | Eoulky)
110 | 0| Bajlky)
11| 1| Bowlk)
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AND gate encryption

We now create a random permutation of the table

Wi
1
1
0
0

= O O =
S
© O O HS

—_— — — —
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AND gate encryption

We then just keep the ciphertext columns
e This table is called a Garbled Gate.

So each gate in the circuit has four ciphertexts associated to it.
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Gate evaluation

- Gate evaluation occurs as follows:

- Suppose the party learns the wire label value for the zero value on wire i and the one
value on wire j.

— They learn k? and kjl-.
— Note they do not know wire i is zero and wire j is one.

- Using these values they can decrypt only one row of the table

— They try all rows, but only one actually decrypts
— This is why we needed an IND-CCA scheme, as it rejects invalid ciphertexts.
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Gate evaluation

We can only decrypt the second row.

Hence, we learn k¢, but we have no idea it corresponds to the zero value on the output wire.
k
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Garbled circuit

Given a function
y=F(z)
expressed as a boolean circuit for F' the entire garbled circuit is the following values

¢ The garbled table for every gate in F.

e The “wire label table” for every possible input bit

e The “wire label table” for every possible output bit

Suppose the input wires are wire numbers 0, ..., t.
The input wire label table is then the values

(i, k2, k).

) gy NN

Same for the output wire label table.
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Garbled circuit
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Oblivious transfer

Before giving Yao's MPC protocol we need another cryptographic tool

Sender

Receiver

mo, M1~ 7

oT

—— befo

————> 1y
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Yao's two party protocol

- We now have the building blocks for Yao's two party protocol.
- We first assume that the function is of the form
(Y1, y2) = F(x1,22)
where

— 1 (resp. y1) is party one’s input (resp. output)
— x2 (resp. y2) is party two's input (resp. output)

We now give a passively secure protocol (so having only a passively secure OT is OK).
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Yao's two party protocol
Step 1: Party one (the circuit garbler) creates a garbled circuit for F’

(G, (I1,12), (01, 02))
where
e (G is the set of garbled gates
e [ is the input wire label table for party one.
e [ is the input wire label table for party two
e (O is the output wire label table for party one.

e (O, is the output wire label table for party two.
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Yao's two party protocol

Step 2:

The circuit garbler sends G to party two.

The circuit garbler also sends the values in I; corresponding to its input to the function
* So if the garbler wants to input bit b on wire w then it sends to party one the value k% .

* This reveals nothing about the actual input, as k% is a random key.

The circuit garbler also sends the table Oy over to party two.
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Yao's two party protocol

Step 3:

The parties now execute at OT protocol.

¢ One for each input wire w for player two.

Party two, P», acts as the receiver with input bit the input he wants for the function.
Py acts as the sender with the two “messages”

mo = k?u and my = k}ﬂ

So if P, had input bit 0 he would learn kY but not k..
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Yao's two party protocol

Step 4:

The receiver (the circuit evaluator) can now evaluate the garbled circuit to get the garbled
output wire labels.

Using O the receiver can now decode his output to the value y-.

The receiver then sends the rest of the output wire labels back to P;.

Step 5:
Py can decode his output value y; using this data and the table O;.
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More properties and variants

 Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole?
Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)

» Multiparty Yao ([BMR90] )

69



More properties and variants

 Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole?
Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)

Multiparty Yao ([BMR90] )

e Honest majority protocols with active security with improved communication
» Different settings (Fluid MPC, )
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More properties and variants

 Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole?
Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)

» Multiparty Yao ([BMR90] )

e Honest majority protocols with active security with improved communication
» Different settings (Fluid MPC, )

« Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent
work)

e Silent pre-processing
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