Introduction to Secure Multiparty Computation and SPDZ Protocol

Emmanuela Orsini

February 28th, 2023

Roadmap

- 1. Short Introduction to Secure MPC
- 2. Honest-majority LSSS-MPC
- 3. Dishonest-majority LSSS-MPC: The SPDZ protocol
- 4. 2-party Yao garbled circuit

Modern cryptography

Hard disk encryption Database encryption HSM key storage

Modern cryptography

COED - Fully homomorphic encryption

Homomorphic encryption scheme allows computation on ciphertexts. It support three (main) operations

 $\mathsf{Dec}_{\mathsf{sk}}\big(\mathsf{Eval}_f(\mathsf{ek}, c_1, c_2)\big) = f(m_1, m_2)$

COED - Fully homomorphic encryption

In FHE the parties encrypt their data, a server computes the function in the encrypted domain, a designated party gets the output

- Still rather slow in computation
- Relatively cheap in communication
- Only possible (currently) for simple functions

FHE - Recent developments

"I don't think we'll see anyone using Gentry's solution in our lifetimes."

- Still slow in computation
- Relatively cheap in communication
- Only possible (currently) for simple functions

* HE is getting faster 8 times every year

e.g. Bootstrapping time: the most time-consuming operation in HE

COED - Secure multiparty computation

- While FHE allows computation to be performed on encrypted data held on a single server, MPC allows computation on data that is split across multiple servers
- MPC is well researched subfield of cryptography
 - Research began in the late 1980s
 - Thousands of research papers
 - MPC is now a very active applied area of research

COED - Secure multiparty computation

Secure function evaluation: $f(x_1, x_2, x_3, x_4, x_5)$

- Correctness: Parties obtain the correct output
- **Privacy**: Only the output is learned (and nothing else)

COED - Secure multiparty computation

Secure function evaluation: $f(x_1, x_2, x_3, x_4, x_5)$

- Fast computation
- Expensive in communication
- Enables a number of applications

COED - Applications

- The classic millionaires' problem
- Joint genome studies
- Studies on linked databases
- Outsourcing computation to the cloud
- Collaborative network anomaly detection
- Financial reporting in a consortium
- Securing cryptographic keys
- Statistics
- . . .

Secure multiparty computation

Ideal world

Real world

Secure multiparty computation

Ideal world

Real world

MPC dimensions

MPC dimensions

Computational model: Boolean/arithmetic circuit

Adversarial behaviour:

- Passive (semi-honest), i.e. adversary correctly running the protocol cannot learn anything
- Active (malicious), i.e. adversary arbitrary deviating from the protocol cannot learn anything

Number of corruptions: corruption threshold, honest/dishonest majority

Efficiency: round/communication/computation complexity

Security: information-theoretic, statistical, computational

MPC with a honest majority - Feasibility

Let n be the number of parties and t the number of parties that can be corrupt

- For t < n/3 secure multiparty protocols with guaranteed output delivery can be achieved for any function with **computational security** assuming a synchronous point-to-point network with authenticated channels and with **information-theoretic security** assuming the channels are also private.
- For t < n/2 secure multiparty protocols with guaranteed output delivery can be achieved for any function with **computational and information-theoretic security**, assuming that the parties also have access to a broadcast channel.

MPC with a dishonest majority - Feasibility

- For $t \geq n/2$ computationally secure multiparty protocols without guaranteed output delivery can be achieved

However, we can still have very efficient protocols

The two main paradigms for secure MPC

GMW

- Interaction at every gate (LSSS)
 - Support both arithmetic and Boolean computation
 - Very low bandwidth, good in the LAN setting
- Number of rounds depends on circuit depth

YAO

- Garbled circuit
 - Better suited for Boolean circuits
 - Requires significant bandwidth, faster on slower networks, like the Internet
- Small constant number of rounds, independent of circuit depth

LSSS

Reed–Solomon Codes

Consider the set of polynomials of degree less than or equal to t over \mathbb{F}_q

$$\mathbb{P} = \{f_0 + f_1 \cdot X + \dots + f_t \cdot X^t : f_i \in \mathbb{F}_q\}.$$

This defines the set of code-words in our code, equal to q^{t+1} .

The actual code words are given by

$$\mathcal{C} = \{ (f(1), f(2), \dots, f(n)) : f \in \mathbb{P} \}.$$

Think of f as the message and $c \in C$ as the codeword.

- There is redundancy in this representation
- $(t+1) \cdot \log_2 q$ bits of information are represented by $n \cdot \log_2 q$ bits.

Reed–Solomon Codes

Figure: Cubic function evaluated at seven points

LSSS with an honest majority - SSS

We can use Reed-Solomon codes to define a secret sharing scheme.

A Reed–Solomon code is defined by two integers (n, t) with t < n.

We map secrets $s \in \mathbb{F}_q$ to the set \mathbb{P} by associating a polynomial with the secret given by the constant term

For n parties we then distribute the shares as the elements of the code word

• So party i gets $s_i = f(i)$ for $1 \le i \le n$.

Secret reconstruction is via

$$s \leftarrow f(0) = \sum_{i=1}^{n} s_i \cdot \delta_i(0).$$

Actually any t + 1 parties can recover the secret.

Reed-Solomon Codes: Data Recovery

This can be done via Lagrange interpolation

Take the values

$$\delta_i(X) \leftarrow \prod_{1 \le j \le n, i \ne j} \left(\frac{X-j}{i-j}\right), \quad 1 \le i \le n.$$

Note that we have the following properties, for all i,

- $\delta_i(i) = 1.$
- $\delta_i(j) = 0$, if $i \neq j$.
- $\deg \delta_i(X) = n 1.$

Lagrange interpolation takes the values s_i and computes

$$f(X) \leftarrow \sum_{i=1}^{n} s_i \cdot \delta_i(X).$$

A set of honest parties do not reveal their shares to anyone unless they want to.

A passive adversary controlling a subset A wants to learn the secret from the honest parties.

- This means $t \ge |A|$ to ensure privacy.
- Shamir is said to be a threshold secret sharing scheme
- If $|A| \leq t$ the adversary learns nothing at all about the secret.

The number of honest parties must be able to recover the secret, so we have

 $n - |A| > t \ge |A|$

i.e.

$$|A| < n/2.$$

An active adversary is one which will lie about its shares

• In order for the honest parties to recover the wrong secret

To protect against this we use the error correcting property of Reed-Solomon codes.

Reed-Solomon code. The RS code is a linear [n, t+1, n-t]-code over \mathbb{F}_q .

- The code can always detect up to n-t-1 errors
- There exists an efficient decoding algorithm that corrects up to $\frac{n-t-1}{2}$ errors.
- If the adversary is of size $|A| \leq (n-t-1)/2$ we can recover the secret i.e.

$$t < n - 2 \cdot |A|$$

• To maintain security we require $|A| \leq t$, i.e.

|A| < n/3

An active adversary is one which will lie about its shares

• In order for the honest parties to recover the wrong secret

To protect against this we use the error correcting property of Reed-Solomon codes.

Reed-Solomon code. The RS code is a linear [n, t+1, n-t]-code over \mathbb{F}_q .

- The code can always detect up to n-t-1 errors
- There exists an efficient decoding algorithm that *corrects* up to $\frac{n-t-1}{2}$ errors.
- If the adversary is of size $|A| \leq (n-t-1)/2$ we can recover the secret i.e.

$$t < n - 2 \cdot |A|$$

• To maintain security we require $|A| \leq t$, i.e.

|A| < n/3

If we receive n shares and t < n/2 we know if someone is lying, and hence can abort.

- If we do not abort (we do not detect any errors), then we can recover the secret
- If we abort we do not know who cheated.

If we receive n shares and t < n/3 we can know if someone is lying, but we do not need to abort.

• We use the error-correction property to recover the correct shares for everyone, work out who is cheating, and recover the secret.

If we receive only t+1 shares we can reconstruct a secret, but not necessarily the correct one.

• We can also reconstruct the shares which are consistent for all parties who did not send us their shares.

In this case, if we had a lot of such openings to check,

- · For each opening reconstruct the share vector
- Hash the share vector into a running hash function
- Compare the hash value with all other parties later on.

Thus if we are opening a lot of values, each party only needs to communicate with t+1 other parties, and not all n.

Honest-majority MPC with Shamir's secret sharing scheme

Input: The input data $(i, \langle r \rangle, r)$ is trivial:

- Party i generates an r value and distributed it to all parties
- If they distribute something invalid, then this will be detected later.
- If they distribute something not equal to r, then only they are affected in the end:
 - Either they will input an incorrect value into the MPC engine
 - Or they will not get the output they expect

Linear gate: Locally (Shamir's secret sharing is linear)

 $a \cdot \langle s \rangle + \langle r \rangle = \langle a \cdot s + r \rangle$

Non-linear gate: ???

Schur Product

- Suppose each party i holds a vector of shares \mathbf{s}_i for each secret s
 - In Shamir this a single value.
- The Schur product of two such sharings

 $(\mathbf{s}_1,\ldots,\mathbf{s}_n)$ and $(\mathbf{s}_1',\ldots,\mathbf{s}_n')$

is the local tensor of each parties

 $\mathbf{s}_i \otimes \mathbf{s}'_i.$

- $\mathbf{s}_i \otimes \mathbf{s}_i'$ is a vector of length $n \cdot (n+1)/2$
- In the case of Shamir this just means locally multiply the shares together to get one share.

Honest-majority MPC with Shamir's secret sharing scheme

- Given s and s' shared by polynomials f and f' of degree t.
- The Schur product held by party i is $f(i) \cdot f'(i)$.
- $s \cdot s'$ is shared by the polynomial $g = f \cdot f'$ of degree $2 \cdot t$
- The shares of g are $g(i) = f(i) \cdot f'(i)$.
- Since $2 \cdot t < n$ the Lagrange coefficients give us how to express $s \cdot s'$ in terms of a linear combination of the g(i).

Multiplication Shamir

- We have $s_i = f(i)$ and $s'_i = f'(i)$ sharing s and s'.
- Parties form the Schur products locally $\hat{s}_i = s_i \cdot s'_i$.

We know, as t < n/2, that there exists λ_i such that

$$s \cdot s' = \lambda_1 \cdot \widehat{s}_1 + \ldots + \lambda_n \cdot \widehat{s}_n.$$

• Parties now compute $u_i=\lambda_i\cdot \hat{s_i},$ so we actually have a full threshold sharing of the product

$$s \cdot s' = u_1 + \ldots + u_n.$$

Multiplication Shamir

• Party i now creates a sharing of u_i and sends the shares to each party.

That is

- Party i generates a polynomial $g_i(X)$ of degree t such that $g_i(0) = u_i$.
- Party *i* sends party *j* the value $g_i(j)$.

The resulting sharing of u_i we call $\langle u_i \rangle$.

- All parties can then compute a Shamir sharing of degree t of the product $s\cdot s'$ by computing the linear function

$$\langle s \cdot s' \rangle = \langle u_1 \rangle + \ldots + \langle u_n \rangle$$

locally.

Passive Multiplication Protocol

Maurer's protocol gives a passive multiplication protocol:

Step 1: Form the Schur product of the parties shares.

- Step 2: Express the product as a sum of the local Schur products.
- Step 3: Reshare the resulting full threshold sharing.
- **Step 4:** Recombine the resulting shares locally.

In Step 3 an adversarial party could lie, resulting in a potentially invalid sharing, or a sharing of the wrong value in the final output.

Why it is not active secure?

• Need to check that the multiplication gates are correctly evaluated

The dishonest-majority case

SPDZ setting:

- Dishonest majority: up to n-1 corruptions, requires computational assumption
- · Active security: Security with abort, no fairness
- Arithmetic circuits: tipically $\mathbb{F}_p,$ with large p, but can also handle Boolean circuits, rings etc
- What does 'SPDZ' stand for? [Damgärd, Pastro, Smart, Zakarias '12], there are many subsequent works with improvements and variants

MPC with preprocessing

LSSS MPC - Notation

- Every secret values $x \in \mathbb{F}$ in the computation is secret-shared among the parties.
- We consider an additive-secret sharing scheme

 x_3

such that $x = \sum_i x_i$ and party P_i holds the share x_i .

- $\langle x \rangle$ -representation
- Note the values x is unknown to the parties
- To reconstruct the value x all the shares are needed

LSSS - Linear computation

• The scheme is linear, so linear operations are local

 $\langle x\rangle+\langle y\rangle=\langle x+y\rangle$

$$a\cdot \langle x\rangle = \langle a\cdot x\rangle$$

• We can compute any linear function on shared values

LSSS - Multiplication

- Input multiplication gate: $\langle x
angle$ and $\langle y
angle$

What if parties don't follow the protocol?

 $\begin{array}{l} \star \ x = \sum_{i} x_{i} \\ \star \ \gamma(x) = \sum_{i} \gamma_{i}(x) = \alpha \cdot x \end{array}$

What if parties don't follow the protocol?

New online evaluation [DPSZ12, SPeeDZ])

- $\langle x \rangle = \{x_i\}_{i \in \mathcal{P}}$, such that $\sum_i x_i = x$
- $[x] = \{\langle x \rangle, \langle \alpha \rangle, \langle \gamma \rangle \}_{i \in \mathcal{P}}$, such that $\gamma = \alpha \cdot x$ in $\mathbb F$
- 1. Input values using [x]-representation
- 2. Evaluate the circuit gate by bate using the linearity of $[\cdot]$ and Beaver's trick for multiplication, with openings^1
- 3. Do a batch check of MACs
- 4. If the check passes, reconstruct the output opening the output values

Checking the openings

We need to check the MAC every time a value is opened Check the MAC relation without revealing α

- A corrupt party P_i sends $x'_i = x_i + \delta$
- Each party reconstruct $x + \delta$
- Each party P_j , $s_j = \alpha_j \cdot (x + \delta) \gamma_j$
- Parties compute $\sum_i s_i = \alpha(x+\delta) \gamma(x) = \alpha \cdot \delta$

The check passes if $\sum_i s_i = 0$. If $\delta \neq 0$, the adversary has to guess α .

• Adversary wins with probability $\frac{1}{|\mathbb{F}|}$

Implementing the trusted dealer - Preprocessing

 \star Main goal of the preprocessing is to generate [a], [b], [ab] = [c]

We need a **threshold homomorphic encryption scheme** $\mathcal{E} = (KeyGen(\cdot), Enc_{pk}(\cdot), DistDec_{sk}(\cdot), Eval_{pk}(\cdot))$ such that:

- 1. Homomorphic Operations: O(n) additions and 1 multiplication
- 2. KeyGen (1^{λ}) returns a public key pk and a secret-shared private key $\langle sk \rangle$
- 3. A distributed decryption protocol such that $Dist Dec_{sk}(Enc(a))$ returns either a or $\langle a \rangle$

 $\mathsf{Enc}_{\mathsf{pk}}(a_1), \ \mathsf{Enc}_{\mathsf{pk}}(b_1)$

 $\mathsf{Enc}_{\mathsf{pk}}(a_2), \ \mathsf{Enc}_{\mathsf{pk}}(b_2)$

 $\mathsf{Enc}_{\mathsf{pk}}(a_3), \ \mathsf{Enc}_{\mathsf{pk}}(b_3)$

Passive triple generation

- 1. P_i samples a_i, b_i, c'_i and broadcasts $Enc(a_i), Enc(b_i), Enc(c'_i)$
- 2. All parties compute:
 - $Enc(a) = \sum_{i} Enc(a_{i}) \quad Enc(b) = \sum_{i} Enc(b_{i}) \quad Enc(c') = \sum_{i} Enc(c_{i})$
 - $Enc(d) = \mathsf{Mult}(Enc(a), Enc(b)) Enc(c')$
 - $d = \mathsf{DistDec}(d)$
- 3. P_1 outputs $a_1, b_1, c'_1 + d$ and each P_i outputs $a_i, b_i, c'_i, i > 1$
- 4. Add MACs with the same procedure

Efficiency by batch computation [SV2011]

- Usually BGV (Brakerski et al. 2011) encryption scheme
- $\mathcal{R} = \mathbb{Z}[X]/(\Phi_m(X))$, where $\deg(\Phi_m(X)) = \phi(m) = N$
- $\mathcal{R}_p = R/pR = \mathbb{Z}_p[X]/(\Phi_m(X))$, m and p coprime

$$\implies \Phi_m(X) \equiv \prod_{i=1}^r F_i(X) \pmod{p}$$

• Each $F_i(X)$ has degree $d = \phi(m)/r = N/r$

 $\mathcal{R}_p \cong \mathbb{Z}_p[X]/(F_1(X)) \otimes \cdots \otimes \mathbb{Z}_p[X]/(F_r(X)) \cong \mathbb{F}_{p^d} \otimes \cdots \otimes \mathbb{F}_{p^d}$

Batch computation

• We can have up to \boldsymbol{N} isomorphisms

 $\psi_i : \mathbb{Z}_p[X]/F_i(X) \to \mathbb{F}_p$

 \Rightarrow we can represent N plaintext elements of \mathbb{F}_p as a single element in R_p .

Active security

• Zero-knowledge proof of plaintext knowledge

- Ensure ciphertexts are correctly generated
- Whenever P_i sends $Enc(a_i)$, prove knowledge of a_i and randomness

• Triple verification

- Even with ZK proofs, may be additive errors in $\langle c \rangle$ due to DistDec
- Sacrifice one triple, to check another

Improvements (this is not exaustive)

- + ZK: Needs to run in large batches for efficiency and are computationally expensive $(\approx 40\%)$
 - Overdrive [KPR18] and TopGear [BCS19]
- Local distributed decryption: this works only for the 2-party case ("Local rounding" of $\langle c_0 + c_1 s \rangle$ gives a sharing of $\langle m \rangle$)
- Linear communication [GHM22]: this protocol is similar to SPDZ, except the step for computing a verified sum, where it is shown a mechanism to amortize the cost over multiple sums achieving linear communication when |C| > n. Match the O(n) complexity of passive protocols.

Yao's Garbled Circuits

Yao's garbled circuits

We consider the case of two party passively secure computation

We assume two parties who want to compute a function $(y_1, y_2) = f(x_1, x_2)$

- Party P_1 holds x_1 and wants to learn y_1
- Party P_2 holds x_2 and wants to learn y_2

Party P_1 does not want P_2 to learn x_1 , and vice versa.

The oldest and simplest way of achieving this is via Yao's Garbled Circuits

• Which are surprisingly fast these days

We first describe the circuit construction mechanism, then we will build a protocol.

Garbled circuits: simple version

We take the function \boldsymbol{f} are write it as a boolean circuit

Our aim is to "encrypt" each gate.

Wire values

- Each wire w_i in the circuit can have two values on it 0 or 1
- We assign two (symmetric) keys k_i^0 and k_i^1 to each wire value on each wire.
- Every gate G can be represented by a function with two input wires and one output wire

 $w_k = G(w_i, w_j)$

- Note: "NOT" gates can be "folded" into the following output gate.

We go through an example of how to encrypt an AND gate

w_i	w_j	w_k
0	0	0
0	1	0
1	0	0
1	1	1

When someone evaluates the gate we want them to learn the wire key

w_i	w_j	w_k	m
0	0	0	k_k^0
0	1	0	k_k^0
1	0	0	$k_k^{\widetilde{0}}$
1	1	1	$k_k^{\widetilde{1}}$

Now we encrypt this message with the wire keys associated to w_i and w_j .

• We assume an IND-CCA two key symmetric encryption function $E_{k,k'}(m)$.

w_i	w_j	w_k	c
0	0	0	$E_{k^0_i,k^0_j}(k^0_k)$
0	1	0	$E_{k^0_i,k^1_j}(k^0_k)$
1	0	0	$E_{k_i^1,k_j^0}(k_k^0)$
1	1	1	$E_{k_i^1,k_j^1}(k_k^1)$

We now create a random permutation of the table

w_i	w_j	w_k	c
1	1	1	$E_{k_{i}^{1},k_{j}^{1}}(k_{k}^{1})$
0	1	0	$E_{k^0_i,k^1_j}(k^0_k)$
0	0	0	$E_{k^0_i,k^0_j}(k^0_k)$
1	0	0	$E_{k_i^1,k_j^0}(k_k^0)$

We then just keep the ciphertext columns

• This table is called a Garbled Gate.

So each gate in the circuit has four ciphertexts associated to it.

Gate evaluation

- Gate evaluation occurs as follows:
- Suppose the party learns the wire label value for the zero value on wire i and the one value on wire j.
 - They learn k_i^0 and k_j^1 .
 - Note they do not know wire i is zero and wire j is one.
- Using these values they can decrypt only one row of the table
 - They try all rows, but only one actually decrypts
 - This is why we needed an IND-CCA scheme, as it rejects invalid ciphertexts.

Gate evaluation

We can only decrypt the second row.

Hence, we learn k_k^0 , but we have no idea it corresponds to the zero value on the output wire.

Garbled circuit

Given a function

$$y = F(x)$$

expressed as a boolean circuit for F the entire garbled circuit is the following values

- The garbled table for every gate in F.
- The "wire label table" for every possible input bit
- The "wire label table" for every possible output bit

Suppose the input wires are wire numbers $0, \ldots, t$.

The input wire label table is then the values

 $(i, \mathsf{k}_i^0, \mathsf{k}_i^1).$

Same for the output wire label table.

Garbled circuit

Oblivious transfer

Before giving Yao's MPC protocol we need another cryptographic tool

- We now have the building blocks for Yao's two party protocol.
- We first assume that the function is of the form

 $(y_1, y_2) = F(x_1, x_2)$

where

- $-x_1$ (resp. y_1) is party one's input (resp. output)
- $-x_2$ (resp. y_2) is party two's input (resp. output)

We now give a passively secure protocol (so having only a passively secure OT is OK).

Step 1: Party one (the circuit garbler) creates a garbled circuit for F

```
(G, (I_1, I_2), (O_1, O_2))
```

where

- G is the set of garbled gates
- I_1 is the input wire label table for party one.
- I_2 is the input wire label table for party two
- O_1 is the output wire label table for party one.
- O_2 is the output wire label table for party two.

Step 2:

The circuit garbler sends G to party two.

The circuit garbler also sends the values in I_1 corresponding to its input to the function

- So if the garbler wants to input bit b on wire w then it sends to party one the value k_w^b .
- This reveals nothing about the actual input, as k_w^b is a random key.

The circuit garbler also sends the table O_2 over to party two.

Step 3:

The parties now execute at OT protocol.

• One for each input wire w for player two.

Party two, P_2 , acts as the receiver with input bit the input he wants for the function.

 P_1 acts as the sender with the two "messages"

$$m_0 = \mathsf{k}^{\mathsf{0}}_{w}$$
 and $m_1 = \mathsf{k}^{\mathsf{1}}_{w}$.

So if P_2 had input bit 0 he would learn k_w^0 but not k_w^1 .

Step 4:

The receiver (the circuit evaluator) can now evaluate the garbled circuit to get the garbled output wire labels.

Using O_2 the receiver can now decode his output to the value y_2 .

The receiver then sends the rest of the output wire labels back to P_1 .

Step 5: P_1 can decode his output value y_1 using this data and the table O_1 .

More properties and variants

- Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)
- Multiparty Yao ([BMR90])
- Honest majority protocols with active security with improved communication
- Different settings (Fluid MPC,)
- Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent work)
- Silent pre-processing

More properties and variants

- Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)
- Multiparty Yao ([BMR90])
- · Honest majority protocols with active security with improved communication
- Different settings (Fluid MPC,)
- Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent work)
- Silent pre-processing

More properties and variants

- Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)
- Multiparty Yao ([BMR90])
- · Honest majority protocols with active security with improved communication
- Different settings (Fluid MPC,)
- Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent work)
- Silent pre-processing