Introduction to Secure Multiparty Computation and SPDZ Protocol

Emmanuela Orsini

February 28th, 2023

Roadmap

1. Short Introduction to Secure MPC
2. Honest-majority LSSS-MPC
3. Dishonest-majority LSSS-MPC: The SPDZ protocol
4. 2-party Yao garbled circuit

Modern cryptography

Hard disk encryption Database encryption HSM key storage

Modern cryptography

COED - Fully homomorphic encryption

Homomorphic encryption scheme allows computation on ciphertexts. It support three (main) operations

COED - Fully homomorphic encryption

In FHE the parties encrypt their data, a server computes the function in the encrypted domain, a designated party gets the output

- Still rather slow in computation
- Relatively cheap in communication
- Only possible (currently) for simple functions

FHE - Recent developments

"I don't think we'll see anyone using
Gentry's solution in our lifetimes."

- Still slow in computation
- Relatively cheap in communication
- Only possible (currently) for simple functions
- HE is getting faster 8 times every year
e.g. Bootstrapping time: the most time-consuming operation in HE

COED - Secure multiparty computation

- While FHE allows computation to be performed on encrypted data held on a single server, MPC allows computation on data that is split across multiple servers
- MPC is well researched subfield of cryptography
- Research began in the late 1980s
- Thousands of research papers
- MPC is now a very active applied area of research

COED - Secure multiparty computation

Secure function evaluation: $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$

- Correctness: Parties obtain the correct output
- Privacy: Only the output is learned (and nothing else)

COED - Secure multiparty computation

Secure function evaluation: $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$

- Fast computation
- Expensive in communication
- Enables a number of applications

COED - Applications

- The classic millionaires' problem
- Joint genome studies
- Studies on linked databases

5

DNA Sequencing

- Outsourcing computation to the cloud
- Collaborative network anomaly detection
- Financial reporting in a consortium
- Securing cryptographic keys
- Statistics
- . . .

Secure multiparty computation

Ideal world

Real world

Secure multiparty computation

Ideal world

Real world

MPC dimensions

MPC dimensions

Computational model: Boolean/arithmetic circuit

Adversarial behaviour:

- Passive (semi-honest), i.e. adversary correctly running the protocol cannot learn anything
- Active (malicious), i.e. adversary arbitrary deviating from the protocol cannot learn anything

Number of corruptions: corruption threshold, honest/dishonest majority
Efficiency: round/communication/computation complexity
Security: information-theoretic, statistical, computational

MPC with a honest majority - Feasibility

Let n be the number of parties and t the number of parties that can be corrupt

- For $t<n / 3$ secure multiparty protocols with guaranteed output delivery can be achieved for any function with computational security assuming a synchronous point-to-point network with authenticated channels and with information-theoretic security assuming the channels are also private.
- For $t<n / 2$ secure multiparty protocols with guaranteed output delivery can be achieved for any function with computational and information-theoretic security, assuming that the parties also have access to a broadcast channel.

MPC with a dishonest majority - Feasibility

- For $t \geq n / 2$ computationally secure multiparty protocols without guaranteed output delivery can be achieved

However, we can still have very efficient protocols

The two main paradigms for secure MPC

GMW

- Interaction at every gate (LSSS)
- Support both arithmetic and Boolean computation
- Very low bandwidth, good in the LAN setting
- Number of rounds depends on circuit depth

YAO

- Garbled circuit
- Better suited for Boolean circuits
- Requires significant bandwidth, faster on slower networks, like the Internet
- Small constant number of rounds, independent of circuit depth

LSSS

Reed-Solomon Codes

Consider the set of polynomials of degree less than or equal to t over \mathbb{F}_{q}

$$
\mathbb{P}=\left\{f_{0}+f_{1} \cdot X+\cdots+f_{t} \cdot X^{t}: f_{i} \in \mathbb{F}_{q}\right\} .
$$

This defines the set of code-words in our code, equal to q^{t+1}.
The actual code words are given by

$$
\mathcal{C}=\{(f(1), f(2), \ldots, f(n)): f \in \mathbb{P}\} .
$$

Think of f as the message and $c \in \mathcal{C}$ as the codeword.

- There is redundancy in this representation
- $(t+1) \cdot \log _{2} q$ bits of information are represented by $n \cdot \log _{2} q$ bits.

Reed-Solomon Codes

Figure: Cubic function evaluated at seven points

LSSS with an honest majority - SSS

We can use Reed-Solomon codes to define a secret sharing scheme.
A Reed-Solomon code is defined by two integers (n, t) with $t<n$.
We map secrets $s \in \mathbb{F}_{q}$ to the set \mathbb{P} by associating a polynomial with the secret given by the constant term

For n parties we then distribute the shares as the elements of the code word

- So party i gets $s_{i}=f(i)$ for $1 \leq i \leq n$.

Secret reconstruction is via

$$
s \leftarrow f(0)=\sum_{i=1}^{n} s_{i} \cdot \delta_{i}(0) .
$$

Actually any $t+1$ parties can recover the secret.

Reed-Solomon Codes: Data Recovery

This can be done via Lagrange interpolation
Take the values

$$
\delta_{i}(X) \leftarrow \prod_{1 \leq j \leq n, i \neq j}\left(\frac{X-j}{i-j}\right), \quad 1 \leq i \leq n
$$

Note that we have the following properties, for all i,

- $\delta_{i}(i)=1$.
- $\delta_{i}(j)=0$, if $i \neq j$.
- $\operatorname{deg} \delta_{i}(X)=n-1$.

Lagrange interpolation takes the values s_{i} and computes

$$
f(X) \leftarrow \sum_{i=1}^{n} s_{i} \cdot \delta_{i}(X)
$$

Shamir secret sharing

A set of honest parties do not reveal their shares to anyone unless they want to.
A passive adversary controlling a subset A wants to learn the secret from the honest parties.

- This means $t \geq|A|$ to ensure privacy.
- Shamir is said to be a threshold secret sharing scheme
- If $|A| \leq t$ the adversary learns nothing at all about the secret.

The number of honest parties must be able to recover the secret, so we have

$$
n-|A|>t \geq|A|
$$

i.e.

$$
|A|<n / 2 .
$$

Shamir secret sharing

An active adversary is one which will lie about its shares

- In order for the honest parties to recover the wrong secret

To protect against this we use the error correcting property of Reed-Solomon codes.
Reed-Solomon code. The RS code is a linear $[n, t+1, n-t]$-code over \mathbb{F}_{q}.

- The code can always detect up to $n-t-1$ errors
- There exists an efficient decoding algorithm that corrects up to $\frac{n-t-1}{2}$ errors.
- If the adversary is of size $|A| \leq(n-t-1) / 2$ we can recover the secret i.e.
- To maintain security we require $|A| \leq t$, i.e.

Shamir secret sharing

An active adversary is one which will lie about its shares

- In order for the honest parties to recover the wrong secret

To protect against this we use the error correcting property of Reed-Solomon codes.
Reed-Solomon code. The RS code is a linear $[n, t+1, n-t]$-code over \mathbb{F}_{q}.

- The code can always detect up to $n-t-1$ errors
- There exists an efficient decoding algorithm that corrects up to $\frac{n-t-1}{2}$ errors.
- If the adversary is of size $|A| \leq(n-t-1) / 2$ we can recover the secret i.e.

$$
t<n-2 \cdot|A|
$$

- To maintain security we require $|A| \leq t$, i.e.

$$
|A|<n / 3
$$

Shamir secret sharing

If we receive n shares and $t<n / 2$ we know if someone is lying, and hence can abort.

- If we do not abort (we do not detect any errors), then we can recover the secret
- If we abort we do not know who cheated.

If we receive n shares and $t<n / 3$ we can know if someone is lying, but we do not need to abort.

- We use the error-correction property to recover the correct shares for everyone, work out who is cheating, and recover the secret.

Shamir secret sharing

If we receive only $t+1$ shares we can reconstruct a secret, but not necessarily the correct one.

- We can also reconstruct the shares which are consistent for all parties who did not send us their shares.

In this case, if we had a lot of such openings to check,

- For each opening reconstruct the share vector
- Hash the share vector into a running hash function
- Compare the hash value with all other parties later on.

Thus if we are opening a lot of values, each party only needs to communicate with $t+1$ other parties, and not all n.

Honest-majority MPC with Shamir's secret sharing scheme

Input: The input data $(i,\langle r\rangle, r)$ is trivial:

- Party i generates an r value and distributed it to all parties
- If they distribute something invalid, then this will be detected later.
- If they distribute something not equal to r, then only they are affected in the end:
- Either they will input an incorrect value into the MPC engine
- Or they will not get the output they expect

Linear gate: Locally (Shamir's secret sharing is linear)

$$
a \cdot\langle s\rangle+\langle r\rangle=\langle a \cdot s+r\rangle
$$

Non-linear gate: ???

Schur Product

- Suppose each party i holds a vector of shares \mathbf{s}_{i} for each secret s
- In Shamir this a single value.
- The Schur product of two such sharings

$$
\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right) \quad \text { and } \quad\left(\mathbf{s}_{1}^{\prime}, \ldots, \mathbf{s}_{n}^{\prime}\right)
$$

is the local tensor of each parties

$$
\mathbf{s}_{i} \otimes \mathbf{s}_{i}^{\prime}
$$

- $\mathbf{s}_{i} \otimes \mathbf{s}_{i}^{\prime}$ is a vector of length $n \cdot(n+1) / 2$
- In the case of Shamir this just means locally multiply the shares together to get one share.

Honest-majority MPC with Shamir's secret sharing scheme

- Given s and s^{\prime} shared by polynomials f and f^{\prime} of degree t.
- The Schur product held by party i is $f(i) \cdot f^{\prime}(i)$.
- $s \cdot s^{\prime}$ is shared by the polynomial $g=f \cdot f^{\prime}$ of degree $2 \cdot t$
- The shares of g are $g(i)=f(i) \cdot f^{\prime}(i)$.
- Since $2 \cdot t<n$ the Lagrange coefficients give us how to express $s \cdot s^{\prime}$ in terms of a linear combination of the $g(i)$.

Multiplication Shamir

- We have $s_{i}=f(i)$ and $s_{i}^{\prime}=f^{\prime}(i)$ sharing s and s^{\prime}.
- Parties form the Schur products locally $\widehat{s}_{i}=s_{i} \cdot s_{i}^{\prime}$.

We know, as $t<n / 2$, that there exists λ_{i} such that

$$
s \cdot s^{\prime}=\lambda_{1} \cdot \widehat{s}_{1}+\ldots+\lambda_{n} \cdot \widehat{s}_{n} .
$$

- Parties now compute $u_{i}=\lambda_{i} \cdot \widehat{s}_{i}$, so we actually have a full threshold sharing of the product

$$
s \cdot s^{\prime}=u_{1}+\ldots+u_{n} .
$$

Multiplication Shamir

- Party i now creates a sharing of u_{i} and sends the shares to each party.

That is

- Party i generates a polynomial $g_{i}(X)$ of degree t such that $g_{i}(0)=u_{i}$.
- Party i sends party j the value $g_{i}(j)$.

The resulting sharing of u_{i} we call $\left\langle u_{i}\right\rangle$.

- All parties can then compute a Shamir sharing of degree t of the product $s \cdot s^{\prime}$ by computing the linear function

$$
\left\langle s \cdot s^{\prime}\right\rangle=\left\langle u_{1}\right\rangle+\ldots+\left\langle u_{n}\right\rangle
$$

locally.

Passive Multiplication Protocol

Maurer's protocol gives a passive multiplication protocol:

Step 1: Form the Schur product of the parties shares.
Step 2: Express the product as a sum of the local Schur products.
Step 3: Reshare the resulting full threshold sharing.
Step 4: Recombine the resulting shares locally.

In Step 3 an adversarial party could lie, resulting in a potentially invalid sharing, or a sharing of the wrong value in the final output.

Why it is not active secure?

- Need to check that the multiplication gates are correctly evaluated

The dishonest-majority case

SPDZ setting:

- Dishonest majority: up to $n-1$ corruptions, requires computational assumption
- Active security: Security with abort, no fairness
- Arithmetic circuits: tipically \mathbb{F}_{p}, with large p, but can also handle Boolean circuits, rings etc
- What does 'SPDZ' stand for? [Damgärd, Pastro, Smart, Zakarias '12], there are many subsequent works with improvements and variants

MPC with preprocessing

LSSS MPC - Notation

- Every secret values $x \in \mathbb{F}$ in the computation is secret-shared among the parties.
- We consider an additive-secret sharing scheme

such that $x=\sum_{i} x_{i}$ and party P_{i} holds the share x_{i}.
- $\langle x\rangle$-representation
- Note the values x is unknown to the parties
- To reconstruct the value x all the shares are needed

LSSS - Linear computation

- The scheme is linear, so linear operations are local

$$
\begin{gathered}
\langle x\rangle+\langle y\rangle=\langle x+y\rangle \\
a \cdot\langle x\rangle=\langle a \cdot x\rangle
\end{gathered}
$$

- We can compute any linear function on shared values

LSSS - Multiplication

- Input multiplication gate: $\langle x\rangle$ and $\langle y\rangle$

What if parties don't follow the protocol?

What if parties don't follow the protocol?

[^0]

New online evaluation [DPSZ12, SPeeDZ])

- $\langle x\rangle=\left\{x_{i}\right\}_{i \in \mathcal{P}}$, such that $\sum_{i} x_{i}=x$
- $[x]=\{\langle x\rangle,\langle\alpha\rangle,\langle\gamma\rangle\}_{i \in \mathcal{P}}$, such that $\gamma=\alpha \cdot x$ in \mathbb{F}

1. Input values using $[x]$-representation
2. Evaluate the circuit gate by bate using the linearity of [.] and Beaver's trick for multiplication, with openings ${ }^{1}$
3. Do a batch check of MACs
4. If the check passes, reconstruct the output opening the output values
[^1]
Checking the openings

We need to check the MAC every time a value is opened Check the MAC relation without revealing α

- A corrupt party P_{i} sends $x_{i}^{\prime}=x_{i}+\delta$
- Each party reconstruct $x+\delta$
- Each party $P_{j}, s_{j}=\alpha_{j} \cdot(x+\delta)-\gamma_{j}$
- Parties compute $\sum_{i} s_{i}=\alpha(x+\delta)-\gamma(x)=\alpha \cdot \delta$

The check passes if $\sum_{i} s_{i}=0$. If $\delta \neq 0$, the adversary has to guess α.

- Adversary wins with probability $\frac{1}{|F|}$

Implementing the trusted dealer - Preprocessing

Preprocessing with homomorphic encryption

* Main goal of the preprocessing is to generate $[a],[b],[a b]=[c]$

We need a threshold homomorphic encryption scheme $\mathcal{E}=\left(\operatorname{KeyGen}(\cdot), \operatorname{Enc}_{\mathrm{pk}}(\cdot), \operatorname{DistDec} \mathrm{Ck}_{\mathrm{sk}}(\cdot), \operatorname{Eval}_{\mathrm{pk}}(\cdot)\right)$ such that:

1. Homomorphic Operations: $O(n)$ additions and 1 multiplication
2. KeyGen $\left(1^{\lambda}\right)$ returns a public key pk and a secret-shared private key $\langle\mathrm{sk}\rangle$
3. A distributed decryption protocol such that $\operatorname{Dist}^{\operatorname{Dec}} \mathrm{sk}_{\text {sk }}(\operatorname{Enc}(a))$ returns either a or $\langle a\rangle$

Preprocessing with homomorphic encryption [DPSZ12]

$\operatorname{Enc}_{\mathrm{pk}}\left(a_{2}\right), \operatorname{Enc}_{\mathrm{pk}}\left(b_{2}\right)$

$\operatorname{Enc}_{\mathrm{pk}}\left(a_{3}\right), \operatorname{Enc}_{\mathrm{pk}}\left(b_{3}\right)$

Preprocessing with homomorphic encryption [DPSZ12]

Preprocessing with homomorphic encryption [DPSZ12]

Preprocessing with homomorphic encryption [DPSZ12]

Passive triple generation

1. P_{i} samples $a_{i}, b_{i}, c_{i}^{\prime}$ and broadcasts $\operatorname{Enc}\left(a_{i}\right), \operatorname{Enc}\left(b_{i}\right), \operatorname{Enc}\left(c_{i}^{\prime}\right)$
2. All parties compute:

$$
\begin{aligned}
& -\operatorname{Enc}(a)=\sum_{i} \operatorname{Enc}\left(a_{i}\right) \quad \operatorname{Enc}(b)=\sum_{i} \operatorname{Enc}\left(b_{i}\right) \quad \operatorname{Enc}\left(c^{\prime}\right)=\sum_{i} \operatorname{Enc}\left(c_{i}\right) \\
& -\operatorname{Enc}(d)=\operatorname{Mult}(\operatorname{Enc}(a), \operatorname{Enc}(b))-\operatorname{Enc}\left(c^{\prime}\right) \\
& -d=\operatorname{Dist\operatorname {Dec}(d)}
\end{aligned}
$$

3. P_{1} outputs $a_{1}, b_{1}, c_{1}^{\prime}+d$ and each P_{i} outputs $a_{i}, b_{i}, c_{i}^{\prime}, i>1$
4. Add MACs with the same procedure

Efficiency by batch computation [SV2011]

- Usually BGV (Brakerski et al. 2011) encryption scheme
- $\mathcal{R}=\mathbb{Z}[X] /\left(\Phi_{m}(X)\right)$, where $\operatorname{deg}\left(\Phi_{m}(X)\right)=\phi(m)=N$
- $\mathcal{R}_{p}=R / p R=\mathbb{Z}_{p}[X] /\left(\Phi_{m}(X)\right), m$ and p coprime

$$
\Longrightarrow \quad \Phi_{m}(X) \equiv \prod_{i=1}^{r} F_{i}(X) \quad(\bmod p)
$$

- Each $F_{i}(X)$ has degree $d=\phi(m) / r=N / r$

$$
\mathcal{R}_{p} \cong \mathbb{Z}_{p}[X] /\left(F_{1}(X)\right) \otimes \cdots \otimes \mathbb{Z}_{p}[X] /\left(F_{r}(X)\right) \cong \mathbb{F}_{p^{d}} \otimes \cdots \otimes \mathbb{F}_{p^{d}}
$$

Batch computation

- We can have up to N isomorphisms

$$
\psi_{i}: \mathbb{Z}_{p}[X] / F_{i}(X) \rightarrow \mathbb{F}_{p}
$$

\Rightarrow we can represent N plaintext elements of \mathbb{F}_{p} as a single element in R_{p}.

Active security

- Zero-knowledge proof of plaintext knowledge
- Ensure ciphertexts are correctly generated
- Whenever P_{i} sends $\operatorname{Enc}\left(a_{i}\right)$, prove knowledge of a_{i} and randomness
- Triple verification
- Even with ZK proofs, may be additive errors in $\langle c\rangle$ due to DistDec
- Sacrifice one triple, to check another

Improvements (this is not exaustive)

- ZK: Needs to run in large batches for efficiency and are computationally expensive ($\approx 40 \%$)
- Overdrive [KPR18] and TopGear [BCS19]
- Local distributed decryption: this works only for the 2-party case ("Local rounding" of $\left\langle c_{0}+c_{1} s\right\rangle$ gives a sharing of $\langle m\rangle$)
- Linear communication [GHM22]: this protocol is similar to SPDZ, except the step for computing a verified sum, where it is shown a mechanism to amortize the cost over multiple sums achieving linear communication when $|C|>n$. Match the $O(n)$ complexity of passive protocols.

Yao's Garbled Circuits

Yao's garbled circuits

We consider the case of two party passively secure computation
We assume two parties who want to compute a function $\left(y_{1}, y_{2}\right)=f\left(x_{1}, x_{2}\right)$

- Party P_{1} holds x_{1} and wants to learn y_{1}
- Party P_{2} holds x_{2} and wants to learn y_{2}

Party P_{1} does not want P_{2} to learn x_{1}, and vice versa.
The oldest and simplest way of achieving this is via Yao's Garbled Circuits

- Which are surprisingly fast these days

We first describe the circuit construction mechanism, then we will build a protocol.

Garbled circuits: simple version

We take the function f are write it as a boolean circuit

Our aim is to "encrypt" each gate.

Wire values

- Each wire w_{i} in the circuit can have two values on it 0 or 1
- We assign two (symmetric) keys k_{i}^{0} and k_{i}^{1} to each wire value on each wire.
- Every gate G can be represented by a function with two input wires and one output wire

$$
w_{k}=G\left(w_{i}, w_{j}\right)
$$

- Note: "NOT" gates can be "folded" into the following output gate.

AND gate encryption

We go through an example of how to encrypt an AND gate

w_{i}	w_{j}	w_{k}
0	0	0
0	1	0
1	0	0
1	1	1

AND gate encryption

When someone evaluates the gate we want them to learn the wire key

w_{i}	w_{j}	w_{k}	m
0	0	0	k_{k}^{0}
0	1	0	k_{k}^{0}
1	0	0	k_{k}^{0}
1	1	1	k_{k}^{1}

AND gate encryption

Now we encrypt this message with the wire keys associated to w_{i} and w_{j}.

- We assume an IND-CCA two key symmetric encryption function $E_{\mathrm{k}, \mathrm{k}^{\prime}}(m)$.

w_{i}	w_{j}	w_{k}	c
0	0	0	$E_{k_{i}^{0}, k_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$
0	1	0	$E_{k_{i}^{0}}^{0}, k_{j}^{1}\left(\mathrm{k}_{k}^{0}\right)$
1	0	0	$E_{k_{i}^{\top}}^{0}, \mathrm{k}_{j}^{0}\left(\mathrm{k}_{k}^{0}\right)$
1	1	1	$E_{\mathrm{k}_{i}^{\mathrm{k}}, \mathrm{k}_{j}^{1}}^{\left(\mathrm{k}_{k}^{1}\right)}$

AND gate encryption

We now create a random permutation of the table

w_{i}	w_{j}	w_{k}	c
1	1	1	$E_{\mathrm{k}_{i}^{1}, \mathrm{k}_{j}^{1}}\left(\mathrm{k}_{k}^{1}\right)$
0	1	0	$E_{\mathrm{k}_{i}^{0}, \mathrm{k}_{j}^{1}}\left(\mathrm{k}_{k}^{0}\right)$
0	0	0	$E_{\mathrm{k}_{i}^{0}, \mathrm{k}_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$
1	0	0	$E_{\mathrm{k}_{i}^{1}, \mathrm{k}_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$

AND gate encryption

We then just keep the ciphertext columns

- This table is called a Garbled Gate.

c
$E_{\mathrm{k}_{i}^{1}, \mathrm{k}_{j}^{1}}\left(\mathrm{k}_{k}^{1}\right)$
$E_{\mathrm{k}_{i}^{0}, \mathrm{k}_{j}^{1}}\left(\mathrm{k}_{k}^{0}\right)$
$E_{\mathrm{k}_{i}^{0}, \mathrm{k}_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$
$E_{\mathrm{k}_{i}^{1}, \mathrm{k}_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$

So each gate in the circuit has four ciphertexts associated to it.

Gate evaluation

- Gate evaluation occurs as follows:
- Suppose the party learns the wire label value for the zero value on wire i and the one value on wire j.
- They learn k_{i}^{0} and k_{j}^{1}.
- Note they do not know wire i is zero and wire j is one.
- Using these values they can decrypt only one row of the table
- They try all rows, but only one actually decrypts
- This is why we needed an IND-CCA scheme, as it rejects invalid ciphertexts.

Gate evaluation

c
$E_{\mathrm{k}_{i}^{1}, \mathrm{k}_{j}^{1}}\left(\mathrm{k}_{k}^{1}\right)$
$E_{\mathrm{k}_{i}^{0}, \mathrm{k}_{j}^{1}}\left(\mathrm{k}_{k}^{0}\right)$
$E_{\mathrm{k}_{i}^{0}, \mathrm{k}_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$
$E_{\mathrm{k}_{i}^{1}, \mathrm{k}_{j}^{0}}\left(\mathrm{k}_{k}^{0}\right)$

We can only decrypt the second row.

Hence, we learn k_{k}^{0}, but we have no idea it corresponds to the zero value on the output wire.

Garbled circuit

Given a function

$$
y=F(x)
$$

expressed as a boolean circuit for F the entire garbled circuit is the following values

- The garbled table for every gate in F.
- The "wire label table" for every possible input bit
- The "wire label table" for every possible output bit

Suppose the input wires are wire numbers $0, \ldots, t$.
The input wire label table is then the values

$$
\left(i, \mathrm{k}_{i}^{0}, \mathrm{k}_{i}^{1}\right) .
$$

Same for the output wire label table.

Garbled circuit

Input =0101

Oblivious transfer

Before giving Yao's MPC protocol we need another cryptographic tool

Yao's two party protocol

- We now have the building blocks for Yao's two party protocol.
- We first assume that the function is of the form

$$
\left(y_{1}, y_{2}\right)=F\left(x_{1}, x_{2}\right)
$$

where

- x_{1} (resp. y_{1}) is party one's input (resp. output)
- x_{2} (resp. y_{2}) is party two's input (resp. output)

We now give a passively secure protocol (so having only a passively secure OT is OK).

Yao's two party protocol

Step 1: Party one (the circuit garbler) creates a garbled circuit for F

$$
\left(G,\left(I_{1}, I_{2}\right),\left(O_{1}, O_{2}\right)\right)
$$

where

- G is the set of garbled gates
- I_{1} is the input wire label table for party one.
- I_{2} is the input wire label table for party two
- O_{1} is the output wire label table for party one.
- O_{2} is the output wire label table for party two.

Yao's two party protocol

Step 2:

The circuit garbler sends G to party two.
The circuit garbler also sends the values in I_{1} corresponding to its input to the function

- So if the garbler wants to input bit b on wire w then it sends to party one the value k_{w}^{b}.
- This reveals nothing about the actual input, as k_{w}^{b} is a random key.

The circuit garbler also sends the table O_{2} over to party two.

Yao's two party protocol

Step 3:

The parties now execute at OT protocol.

- One for each input wire w for player two.

Party two, P_{2}, acts as the receiver with input bit the input he wants for the function.
P_{1} acts as the sender with the two "messages"

$$
m_{0}=\mathrm{k}_{w}^{0} \quad \text { and } \quad m_{1}=\mathrm{k}_{w}^{1} .
$$

So if P_{2} had input bit 0 he would learn k_{w}^{0} but not k_{w}^{1}.

Yao's two party protocol

Step 4:

The receiver (the circuit evaluator) can now evaluate the garbled circuit to get the garbled output wire labels.

Using O_{2} the receiver can now decode his output to the value y_{2}.
The receiver then sends the rest of the output wire labels back to P_{1}.

Step 5:
P_{1} can decode his output value y_{1} using this data and the table O_{1}.

More properties and variants

- Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)
- Multiparty Yao ([BMR90])
- Honest majority protocols with active security with improved communication
- Different settings (Fluid MPC.)
- Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent work)
- Silent pre-processing

More properties and variants

- Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)
- Multiparty Yao ([BMR90])
- Honest majority protocols with active security with improved communication
- Different settings (Fluid MPC,)
- Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent work)
- Silent pre-processing

More properties and variants

- Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)
- Multiparty Yao ([BMR90])
- Honest majority protocols with active security with improved communication
- Different settings (Fluid MPC,)
- Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent work)
- Silent pre-processing

[^0]: ${ }^{\alpha_{1}} a_{0}^{x_{1}, \gamma_{1}}$

 * $x=\sum_{i} x_{i}$
 $\star \gamma(x)=\sum_{i} \gamma_{i}(x)=\alpha \cdot x$

[^1]: ${ }^{1}$ Check MACs on opened values

