
Introduction to Secure Multiparty Computation and SPDZ
Protocol

Emmanuela Orsini

February 28th, 2023

Roadmap

1. Short Introduction to Secure MPC

2. Honest-majority LSSS-MPC

3. Dishonest-majority LSSS-MPC: The SPDZ protocol

4. 2-party Yao garbled circuit

2

Modern cryptography

3

Modern cryptography

4

COED - Fully homomorphic encryption

Homomorphic encryption scheme allows computation on ciphertexts.
It support three (main) operations

Enc

m

pk

c
Dec

c

sk

m

Evalf

c1 = Encpk(m1)

c2 = Encpk(m2)

c3

Decsk
(
Evalf (ek, c1, c2)

)
= f(m1,m2)

5

COED - Fully homomorphic encryption

In FHE the parties encrypt their data, a server computes the function in the encrypted domain,
a designated party gets the output

� Still rather slow in computation

� Relatively cheap in communication

� Only possible (currently) for simple functions

6

FHE - Recent developments

7

COED - Secure multiparty computation

8

COED - Secure multiparty computation

Secure function evaluation: f(x1, x2, x3, x4, x5)

x1 x5

x2x3

x4

� Correctness: Parties obtain the correct output

� Privacy: Only the output is learned (and nothing else)

9

COED - Secure multiparty computation

Secure function evaluation: f(x1, x2, x3, x4, x5)

x1 x5

x2x3

x4

� Fast computation
� Expensive in communication
� Enables a number of applications

10

COED - Applications

� The classic millionaires’ problem

� Joint genome studies

� Studies on linked databases

� Outsourcing computation to the cloud

� Collaborative network anomaly detection

� Financial reporting in a consortium

� Securing cryptographic keys

� Statistics

� . . .

11

Secure multiparty computation

TTP

Ideal world Real world

12

Secure multiparty computation

TTP

Ideal world Real world

12

MPC dimensions

13

MPC dimensions

Computational model: Boolean/arithmetic circuit

Adversarial behaviour:

� Passive (semi-honest), i.e. adversary correctly running the protocol cannot learn anything

� Active (malicious), i.e. adversary arbitrary deviating from the protocol cannot learn
anything

Number of corruptions: corruption threshold, honest/dishonest majority

Efficiency: round/communication/computation complexity

Security: information-theoretic, statistical, computational

14

MPC with a honest majority - Feasibility

Let n be the number of parties and t the number of parties that can be corrupt

� For t < n/3 secure multiparty protocols with guaranteed output delivery can be achieved for any
function with computational security assuming a synchronous point-to-point network with
authenticated channels and with information-theoretic security assuming the channels are also
private.

� For t < n/2 secure multiparty protocols with guaranteed output delivery can be achieved for any
function with computational and information-theoretic security, assuming that the parties also
have access to a broadcast channel.

15

MPC with a dishonest majority - Feasibility

� For t ≥ n/2 computationally secure multiparty protocols without guaranteed output
delivery can be achieved

However, we can still have very efficient protocols

16

The two main paradigms for secure MPC

17

LSSS

18

Reed–Solomon Codes

Consider the set of polynomials of degree less than or equal to t over Fq

P = {f0 + f1 ·X + · · ·+ ft ·Xt : fi ∈ Fq}.

This defines the set of code-words in our code, equal to qt+1.

The actual code words are given by

C = {(f(1), f(2), . . . , f(n)) : f ∈ P}.

Think of f as the message and c ∈ C as the codeword.

� There is redundancy in this representation

� (t+ 1) · log2 q bits of information are represented by n · log2 q bits.

19

Reed–Solomon Codes

Figure: Cubic function evaluated at seven points
20

LSSS with an honest majority - SSS

We can use Reed–Solomon codes to define a secret sharing scheme.

A Reed–Solomon code is defined by two integers (n, t) with t < n.

We map secrets s ∈ Fq to the set P by associating a polynomial with the secret given by the
constant term

For n parties we then distribute the shares as the elements of the code word

� So party i gets si = f(i) for 1 ≤ i ≤ n.

Secret reconstruction is via

s← f(0) =

n∑
i=1

si · δi(0).

Actually any t+ 1 parties can recover the secret.

21

Reed–Solomon Codes: Data Recovery

This can be done via Lagrange interpolation

Take the values

δi(X)←
∏

1≤j≤n,i 6=j

(
X − j
i− j

)
, 1 ≤ i ≤ n.

Note that we have the following properties, for all i,

� δi(i) = 1.

� δi(j) = 0, if i 6= j.

� deg δi(X) = n− 1.

Lagrange interpolation takes the values si and computes

f(X)←
n∑
i=1

si · δi(X).

22

Shamir secret sharing

A set of honest parties do not reveal their shares to anyone unless they want to.

A passive adversary controlling a subset A wants to learn the secret from the honest parties.

� This means t ≥ |A| to ensure privacy.

� Shamir is said to be a threshold secret sharing scheme

� If |A| ≤ t the adversary learns nothing at all about the secret.

The number of honest parties must be able to recover the secret, so we have

n− |A| > t ≥ |A|

i.e.
|A| < n/2.

23

Shamir secret sharing

An active adversary is one which will lie about its shares

� In order for the honest parties to recover the wrong secret

To protect against this we use the error correcting property of Reed–Solomon codes.

Reed-Solomon code. The RS code is a linear [n, t+ 1, n− t]-code over Fq.
- The code can always detect up to n− t− 1 errors

- There exists an efficient decoding algorithm that corrects up to n−t−1
2

errors.

� If the adversary is of size |A| ≤ (n− t− 1)/2 we can recover the secret i.e.

t < n− 2 · |A|

� To maintain security we require |A| ≤ t, i.e.

|A| < n/3

24

Shamir secret sharing

An active adversary is one which will lie about its shares

� In order for the honest parties to recover the wrong secret

To protect against this we use the error correcting property of Reed–Solomon codes.

Reed-Solomon code. The RS code is a linear [n, t+ 1, n− t]-code over Fq.
- The code can always detect up to n− t− 1 errors

- There exists an efficient decoding algorithm that corrects up to n−t−1
2

errors.

� If the adversary is of size |A| ≤ (n− t− 1)/2 we can recover the secret i.e.

t < n− 2 · |A|

� To maintain security we require |A| ≤ t, i.e.

|A| < n/3

24

Shamir secret sharing

If we receive n shares and t < n/2 we know if someone is lying, and hence can abort.

� If we do not abort (we do not detect any errors), then we can recover the secret

� If we abort we do not know who cheated.

If we receive n shares and t < n/3 we can know if someone is lying, but we do not need to
abort.

� We use the error-correction property to recover the correct shares for everyone, work out
who is cheating, and recover the secret.

25

Shamir secret sharing

If we receive only t+ 1 shares we can reconstruct a secret, but not necessarily the correct one.

� We can also reconstruct the shares which are consistent for all parties who did not send us
their shares.

In this case, if we had a lot of such openings to check,

� For each opening reconstruct the share vector

� Hash the share vector into a running hash function

� Compare the hash value with all other parties later on.

Thus if we are opening a lot of values, each party only needs to communicate with t+ 1 other
parties, and not all n.

26

Honest-majority MPC with Shamir’s secret sharing scheme

Input: The input data (i, 〈r〉, r) is trivial:

� Party i generates an r value and distributed it to all parties

� If they distribute something invalid, then this will be detected later.

� If they distribute something not equal to r, then only they are affected in the end:

– Either they will input an incorrect value into the MPC engine
– Or they will not get the output they expect

Linear gate: Locally (Shamir’s secret sharing is linear)

a · 〈s〉+ 〈r〉 = 〈a · s+ r〉

Non-linear gate: ???

27

Schur Product

� Suppose each party i holds a vector of shares si for each secret s

– In Shamir this a single value.

� The Schur product of two such sharings

(s1, . . . , sn) and (s′1, . . . , s
′
n)

is the local tensor of each parties
si ⊗ s′i.

� si ⊗ s′i is a vector of length n · (n+ 1)/2

� In the case of Shamir this just means locally multiply the shares together to get one share.

28

Honest-majority MPC with Shamir’s secret sharing scheme

� Given s and s′ shared by polynomials f and f ′ of degree t.

� The Schur product held by party i is f(i) · f ′(i).

� s · s′ is shared by the polynomial g = f · f ′ of degree 2 · t

� The shares of g are g(i) = f(i) · f ′(i).

� Since 2 · t < n the Lagrange coefficients give us how to express s · s′ in terms of a linear
combination of the g(i).

29

Multiplication Shamir

� We have si = f(i) and s′i = f ′(i) sharing s and s′.

� Parties form the Schur products locally ŝi = si · s′i.

We know, as t < n/2, that there exists λi such that

s · s′ = λ1 · ŝ1 + . . .+ λn · ŝn.

� Parties now compute ui = λi · ŝi, so we actually have a full threshold sharing of the
product

s · s′ = u1 + . . .+ un.

30

Multiplication Shamir

� Party i now creates a sharing of ui and sends the shares to each party.

That is

– Party i generates a polynomial gi(X) of degree t such that gi(0) = ui.
– Party i sends party j the value gi(j).

The resulting sharing of ui we call 〈ui〉.

� All parties can then compute a Shamir sharing of degree t of the product s · s′ by
computing the linear function

〈s · s′〉 = 〈u1〉+ . . .+ 〈un〉

locally.

31

Passive Multiplication Protocol

Maurer’s protocol gives a passive multiplication protocol:

Step 1: Form the Schur product of the parties shares.

Step 2: Express the product as a sum of the local Schur products.

Step 3: Reshare the resulting full threshold sharing.

Step 4: Recombine the resulting shares locally.

In Step 3 an adversarial party could lie, resulting in a potentially invalid sharing, or a sharing of
the wrong value in the final output.

32

Why it is not active secure?

� Need to check that the multiplication gates are correctly evaluated

33

The dishonest-majority case

SPDZ setting:

� Dishonest majority: up to n− 1 corruptions, requires computational assumption

� Active security: Security with abort, no fairness

� Arithmetic circuits: tipically Fp, with large p, but can also handle Boolean circuits, rings
etc

� What does ‘SPDZ’ stand for? [Damgärd, Pastro, Smart, Zakarias ’12], there are many
subsequent works with improvements and variants

34

MPC with preprocessing

TRUSTED DEALER

O
N

L
IN

E
C

O
M

P
U

T
A

T
IO

N

CORRELATED RANDOMNESS

35

LSSS MPC - Notation

� Every secret values x ∈ F in the computation is secret-shared among the parties.

� We consider an additive-secret sharing scheme

x1 x2 x3

such that x =
∑
i xi and party Pi holds the share xi.

� 〈x〉-representation

� Note the values x is unknown to the parties

� To reconstruct the value x all the shares are needed

36

LSSS - Linear computation

� The scheme is linear, so linear operations are local

〈x〉+ 〈y〉 = 〈x+ y〉

a · 〈x〉 = 〈a · x〉

� We can compute any linear function on shared values

37

LSSS - Multiplication

- Input multiplication gate: 〈x〉 and 〈y〉

〈x · y〉 = 〈(x+ a− a) · (y + b− b)〉

= (x+ a) · (y + b)− (y + b)· 〈a〉 − (x+ a)· 〈b〉 + 〈a · b〉

masked and opened

random triple from preprocessing

38

What if parties don’t follow the protocol?

x1

x2
x3

x4

〈x〉

MAC

Secret value

·
·

γ(x) = α · x

〈x〉 〈y〉 〈x+ y〉

〈γ(x)〉

〈γ(y)〉

〈γ(x+ y)〉

〈α〉

? x =
∑
i xi

? γ(x) =
∑
i γi(x) = α · x

39

What if parties don’t follow the protocol?

x1 , γ1α1

x2
γ2
α2

x3
γ3
α3

x4 , γ4α4

〈x〉

MAC

Secret value

·
·

γ(x) = α · x

〈x〉 〈y〉 〈x+ y〉

〈γ(x)〉

〈γ(y)〉

〈γ(x+ y)〉

〈α〉

? x =
∑
i xi

? γ(x) =
∑
i γi(x) = α · x

39

New online evaluation [DPSZ12, SPeeDZ])

� 〈x〉 = {xi}i∈P , such that
∑
i xi = x

� [x] = {〈x〉, 〈α〉, 〈γ〉}i∈P , such that γ = α · x in F

1. Input values using [x]-representation

2. Evaluate the circuit gate by bate using the linearity of [·] and Beaver’s trick for
multiplication, with openings1

3. Do a batch check of MACs

4. If the check passes, reconstruct the output opening the output values

1Check MACs on opened values

40

Checking the openings

We need to check the MAC every time a value is opened
Check the MAC relation without revealing α

� A corrupt party Pi sends x′i = xi + δ

� Each party reconstruct x+ δ

� Each party Pj , sj = αj · (x+ δ)− γj
� Parties compute

∑
i si = α(x+ δ)− γ(x) = α · δ

The check passes if
∑
i si = 0. If δ 6= 0, the adversary has to guess α.

� Adversary wins with probability 1
|F|

41

Implementing the trusted dealer - Preprocessing

TRUSTED DEALER

O
N

L
IN

E
C

O
M

P
U

T
A

T
IO

N

CORRELATED RANDOMNESS

O
F

F
L

IN
E

C
O

M
P

U
T

A
T

IO
N

P
K

C

x1 x5

x2
x3

x4

O
N

L
IN

E
C

O
M

P
U

T
A

T
IO

N

CORRELATED RANDOMNESS

42

Preprocessing with homomorphic encryption

? Main goal of the preprocessing is to generate [a], [b], [ab] = [c]

We need a threshold homomorphic encryption scheme

E = (KeyGen(·),Encpk(·),DistDecsk(·),Evalpk(·)) such that:

1. Homomorphic Operations: O(n) additions and 1 multiplication

2. KeyGen(1λ) returns a public key pk and a secret-shared private key 〈sk〉

3. A distributed decryption protocol such that DistDecsk(Enc(a)) returns either a or 〈a〉

43

Preprocessing with homomorphic encryption [DPSZ12]

a1, b1 a2, b2 a3, b3,

Encpk(a1), Encpk(b1) Encpk(a2), Encpk(b2) Encpk(a3), Encpk(b3)

44

Preprocessing with homomorphic encryption [DPSZ12]

a1, b1 a2, b2 a3, b3,

Encpk(a1), Encpk(b1) Encpk(a2), Encpk(b2) Encpk(a3), Encpk(b3)

Encpk(a), Encpk(b)ADDITIVE HOMOMORPHISM

44

Preprocessing with homomorphic encryption [DPSZ12]

a1, b1 a2, b2 a3, b3,

Encpk(a1), Encpk(b1) Encpk(a2), Encpk(b2) Encpk(a3), Encpk(b3)

Encpk(a), Encpk(b)ADDITIVE HOMOMORPHISM

Encpk(a · b)LOCAL COMPUTATION

44

Preprocessing with homomorphic encryption [DPSZ12]

a1, b1 a2, b2 a3, b3,

Encpk(a1), Encpk(b1) Encpk(a2), Encpk(b2) Encpk(a3), Encpk(b3)

Encpk(a), Encpk(b)ADDITIVE HOMOMORPHISM

Encpk(a · b)LOCAL COMPUTATION

c2c1 c3

DISTR. DECRYPTION

44

Passive triple generation

1. Pi samples ai, bi, c
′
i and broadcasts Enc(ai), Enc(bi), Enc(c

′
i)

2. All parties compute:

– Enc(a) =
∑

iEnc(ai) Enc(b) =
∑

iEnc(bi) Enc(c′) =
∑

iEnc(ci)

– Enc(d) =Mult(Enc(a), Enc(b))− Enc(c′)
– d = DistDec(d)

3. P1 outputs a1, b1, c
′
1 + d and each Pi outputs ai, bi, c

′
i, i > 1

4. Add MACs with the same procedure

45

Efficiency by batch computation [SV2011]

� Usually BGV (Brakerski et al. 2011) encryption scheme

� R = Z[X]/(Φm(X)), where deg(Φm(X)) = φ(m) = N

� Rp = R/pR = Zp[X]/(Φm(X)), m and p coprime

=⇒ Φm(X) ≡
r∏
i=1

Fi(X) (mod p)

� Each Fi(X) has degree d = φ(m)/r = N/r

Rp ∼= Zp[X]/(F1(X))⊗ · · · ⊗ Zp[X]/(Fr(X)) ∼= Fpd ⊗ · · · ⊗ Fpd

46

Batch computation

Rp

Zp[X]/(F1(X)) Zp[X]/(F2(X)) · · · Zp[X]/(Fr(X))

� We can have up to N isomorphisms

ψi : Zp[X]/Fi(X)→ Fp

⇒ we can represent N plaintext elements of Fp as a single element in Rp.

47

Active security

� Zero-knowledge proof of plaintext knowledge

– Ensure ciphertexts are correctly generated

– Whenever Pi sends Enc(ai), prove knowledge of ai and randomness

� Triple verification

– Even with ZK proofs, may be additive errors in 〈c〉 due to DistDec

– Sacrifice one triple, to check another

48

Improvements (this is not exaustive)

� ZK: Needs to run in large batches for efficiency and are computationally expensive
(≈ 40%)

– Overdrive [KPR18] and TopGear [BCS19]

� Local distributed decryption: this works only for the 2-party case
(“Local rounding” of 〈c0 + c1s〉 gives a sharing of 〈m〉)

� Linear communication [GHM22]: this protocol is similar to SPDZ, except the step for
computing a verified sum, where it is shown a mechanism to amortize the cost over
multiple sums achieving linear communication when |C| > n.
Match the O(n) complexity of passive protocols.

49

Yao’s Garbled Circuits

50

Yao’s garbled circuits

We consider the case of two party passively secure computation

We assume two parties who want to compute a function (y1, y2) = f(x1, x2)

� Party P1 holds x1 and wants to learn y1
� Party P2 holds x2 and wants to learn y2

Party P1 does not want P2 to learn x1, and vice versa.

The oldest and simplest way of achieving this is via Yao’s Garbled Circuits

� Which are surprisingly fast these days

We first describe the circuit construction mechanism, then we will build a protocol.

51

Garbled circuits: simple version

We take the function f are write it as a boolean circuit

Our aim is to “encrypt” each gate.

52

Wire values

- Each wire wi in the circuit can have two values on it 0 or 1

- We assign two (symmetric) keys k0i and k1i to each wire value on each wire.

- Every gate G can be represented by a function with two input wires and one output wire

wk = G(wi, wj)

- Note: “NOT” gates can be “folded” into the following output gate.

53

AND gate encryption

We go through an example of how to encrypt an AND gate

wi wj wk
0 0 0
0 1 0
1 0 0
1 1 1

54

AND gate encryption

When someone evaluates the gate we want them to learn the wire key

wi wj wk m
0 0 0 k0k
0 1 0 k0k
1 0 0 k0k
1 1 1 k1k

55

AND gate encryption

Now we encrypt this message with the wire keys associated to wi and wj .

� We assume an IND-CCA two key symmetric encryption function Ek,k′(m).

wi wj wk c
0 0 0 Ek0i ,k

0
j
(k0k)

0 1 0 Ek0i ,k
1
j
(k0k)

1 0 0 Ek1i ,k
0
j
(k0k)

1 1 1 Ek1i ,k
1
j
(k1k)

56

AND gate encryption

We now create a random permutation of the table

wi wj wk c
1 1 1 Ek1i ,k

1
j
(k1k)

0 1 0 Ek0i ,k
1
j
(k0k)

0 0 0 Ek0i ,k
0
j
(k0k)

1 0 0 Ek1i ,k
0
j
(k0k)

57

AND gate encryption

We then just keep the ciphertext columns

� This table is called a Garbled Gate.

c
Ek1i ,k

1
j
(k1k)

Ek0i ,k
1
j
(k0k)

Ek0i ,k
0
j
(k0k)

Ek1i ,k
0
j
(k0k)

So each gate in the circuit has four ciphertexts associated to it.

58

Gate evaluation

- Gate evaluation occurs as follows:

- Suppose the party learns the wire label value for the zero value on wire i and the one
value on wire j.

– They learn k0i and k1j .
– Note they do not know wire i is zero and wire j is one.

- Using these values they can decrypt only one row of the table

– They try all rows, but only one actually decrypts
– This is why we needed an IND-CCA scheme, as it rejects invalid ciphertexts.

59

Gate evaluation

c
Ek1i ,k

1
j
(k1k)

Ek0i ,k
1
j
(k0k)

Ek0i ,k
0
j
(k0k)

Ek1i ,k
0
j
(k0k)

We can only decrypt the second row.

Hence, we learn k0k, but we have no idea it corresponds to the zero value on the output wire.

60

Garbled circuit

Given a function
y = F (x)

expressed as a boolean circuit for F the entire garbled circuit is the following values

� The garbled table for every gate in F .

� The “wire label table” for every possible input bit

� The “wire label table” for every possible output bit

Suppose the input wires are wire numbers 0, . . . , t.

The input wire label table is then the values

(i, k0i , k
1
i).

Same for the output wire label table.

61

Garbled circuit

62

Oblivious transfer

Before giving Yao’s MPC protocol we need another cryptographic tool

OT

Sender

m0, m1
-

Receiver

b ∈ {0, 1}�

mb
-

63

Yao’s two party protocol

- We now have the building blocks for Yao’s two party protocol.

- We first assume that the function is of the form

(y1, y2) = F (x1, x2)

where

– x1 (resp. y1) is party one’s input (resp. output)
– x2 (resp. y2) is party two’s input (resp. output)

We now give a passively secure protocol (so having only a passively secure OT is OK).

64

Yao’s two party protocol

Step 1: Party one (the circuit garbler) creates a garbled circuit for F

(G, (I1, I2), (O1, O2))

where

� G is the set of garbled gates

� I1 is the input wire label table for party one.

� I2 is the input wire label table for party two

� O1 is the output wire label table for party one.

� O2 is the output wire label table for party two.

65

Yao’s two party protocol

Step 2:

The circuit garbler sends G to party two.

The circuit garbler also sends the values in I1 corresponding to its input to the function

� So if the garbler wants to input bit b on wire w then it sends to party one the value kbw.

� This reveals nothing about the actual input, as kbw is a random key.

The circuit garbler also sends the table O2 over to party two.

66

Yao’s two party protocol

Step 3:

The parties now execute at OT protocol.

� One for each input wire w for player two.

Party two, P2, acts as the receiver with input bit the input he wants for the function.

P1 acts as the sender with the two “messages”

m0 = k0w and m1 = k1w.

So if P2 had input bit 0 he would learn k0w but not k1w.

67

Yao’s two party protocol

Step 4:

The receiver (the circuit evaluator) can now evaluate the garbled circuit to get the garbled
output wire labels.

Using O2 the receiver can now decode his output to the value y2.

The receiver then sends the rest of the output wire labels back to P1.

Step 5:
P1 can decode his output value y1 using this data and the table O1.

68

More properties and variants

� Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole?
Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)

� Multiparty Yao ([BMR90])

� Honest majority protocols with active security with improved communication

� Different settings (Fluid MPC,)

� Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent
work)

� Silent pre-processing

69

More properties and variants

� Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole?
Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)

� Multiparty Yao ([BMR90])

� Honest majority protocols with active security with improved communication

� Different settings (Fluid MPC,)

� Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent
work)

� Silent pre-processing

69

More properties and variants

� Active Yao and improvements (Free-XOR, Half-gate, Three Halves Make a Whole?
Beating the Half-Gates Lower Bound for Garbled Circuits [RR21], etc)

� Multiparty Yao ([BMR90])

� Honest majority protocols with active security with improved communication

� Different settings (Fluid MPC,)

� Different pre-processing with OT (TinyOT [NNOB12], Mascot [KOS2016] and subsequent
work)

� Silent pre-processing

69

