
The MPC-in-the-Head Framework
and the Limbo Protocol

C. Delpech de Saint Guilhem
imec-COSIC, KU Leuven
ISC Winter School, March 2, 2023

0 Outline

1 NIZKPoK from MPC in the Head with Preprocessing

2 MPCitH from Circuit Computation: Picnic and BBQ

3 MPCitH from Circuit Verification: Banquet and Limbo

1 MPCitH and the Limbo Protocol

1 Outline

1 NIZKPoK from MPC in the Head with Preprocessing

2 MPCitH from Circuit Computation: Picnic and BBQ

3 MPCitH from Circuit Verification: Banquet and Limbo

2 MPCitH and the Limbo Protocol

1 ZKPoK from MPC in the head

▶ Want efficient ZKPoK for arbitrary NP relation R.

▶ Given
1 x: public statement
2 w: P’s private witness,
want to convince V that R(x, w) = 1 without revealing w.

▶ [IKOS07]: multiparty computation (MPC) of fx(w) = R(x, w).
Simulated by P in the head and checked by V .

3 MPCitH and the Limbo Protocol

1 MPC in the head?

P
w

seed1 seed2

seed3

fx(w)

tran1

seed1
w1

m1
1

m1
2

m1
t

tran2

seed2
w2

m2
1

m2
2

m2
t

tran3

seed3
w3

m3
1

m3
2

m3
t

w1 w2 w3+ + = w

4 MPCitH and the Limbo Protocol

1 ZKPoK from MPC in the head

P
tran1

seed1
w1

m1
1

m1
2

m1
t

tran2

seed2
w2

m2
1

m2
2

m2
t

tran3

seed3
w3

m3
1

m3
2

m3
t

Vcom(tran1)
com(tran2)
com(tran3)

ch $← C

ch = ‘1, 3’

tran1, tran3 check

5 MPCitH and the Limbo Protocol

1 NIZKPoK from MPC in the head

P
tran1

seed1
w1

m1
1

m1
2

m1
t

tran2

seed2
w2

m2
1

m2
2

m2
t

tran3

seed3
w3

m3
1

m3
2

m3
t

V

c1, c2, c3

ch = ‘1, 3’

H

π = {c1, c2, c3, tran1, tran3} check

6 MPCitH and the Limbo Protocol

1 Properties of the MPCitH Proof System

▶ Correctness: If MPC protocol for fx(w) is correct, then so is MPCitH.

▶ Soundness: If fx(w) ̸= 1 and opened parties show fx(w) = 1 then P
cheated during MPC protocol.
• Assuming com is binding, P can’t cheat for opened parties.
• Assuming com is binding, P must cheat on hidden party before it sees ch.
Soundness error is exactly 1

N . In practice N = 2, 4, 8, 16, 32, 64.

▶ Zero-knowledge: First, com must be hiding.
Second, V sees N − 1 transcripts, so MPC protocol must be
(N − 1)-private.

7 MPCitH and the Limbo Protocol

1 Optimizations in Practice

▶ Commitments com1, . . . , comN can be compressed with a Merkle tree.
This means sending only 1 hash value in the first round, instead of N .

▶ Because 1
N is not cryptographically secure, the proof can be repeated in

parallel with different seeds to increase soundness exponentially.

▶ Opening N − 1 transcripts can use a lot of data (and make a large proof).
Using MPC protocol in the broadcast model means

“revealing tran1, tran3” ≈ “sending server2’s output;”
everything else can be computed by V from the seeds.

8 MPCitH and the Limbo Protocol

1 MPCitH from MPC with Preprocessing

▶ Some MPC protocols use preprocessing / online paradigm.
• Preprocessing generates input-independent correlated randomness.
• Online phase uses it for low communication and input-dependent computation.

▶ This can be used for MPC in the head.
• aux: correlated randomness without preprocessing communication included in π.

So more correlated randomness = bigger proof π.

1 P simulates and commits to many preprocessing executions.
2 V challenges all-but-some of them to open and verify.

Indep. of w, so P reveals both master seed and correlated rand aux.
3 With the rest, P simulates and commits to online executions.
4 V challenges and verifies as before; uses less data as online phase is cheap.

9 MPCitH and the Limbo Protocol

2 Outline

1 NIZKPoK from MPC in the Head with Preprocessing

2 MPCitH from Circuit Computation: Picnic and BBQ
The Picnic Scheme: Binary Computation
The BBQ Scheme: Arithmetic Computation

3 MPCitH from Circuit Verification: Banquet and Limbo

10 MPCitH and the Limbo Protocol

2 The Picnic Signature Scheme [CDG+17, ZCD+20]

Given block cipher Fk(x) : K ×X → Y ,
▶ Gen: x

$← X = {0, 1}κ, k
$← K = {0, 1}κ, y ← Fk(x).

sk = k and pk = (y, x).
Security: function Gx : k 7→ Fk(x) is OWF with respect to k.

▶ Sign: Given message m, compute σ = π ← Provem(fy,x(k)).

fy,x(k) = {Fk(x) ?= y}

▶ Verify: verify the proof, including m in the challenge computation.

Choice of Fk: LowMC [ARS+15] as a binary circuit;

11 MPCitH and the Limbo Protocol

2 Picnic: MPC for binary circuits I [CDG+17, ZCD+20]

fx(w) as binary circuit C with wires and gates (XOR and AND).
▶ Wire α, real value is zα, masked as ẑα = zα ⊕ λα for random λα ∈ {0, 1}.

▶ [λα] is n-out-of-n XOR secret sharing

λα =
n⊕

i=1
λ(i)

α ∈ {0, 1}.

▶ Each party Pi holds ẑα and a share λ(i)
α .

▶ Preprocessing prepares masks, online phase computes masked values ẑα.

12 MPCitH and the Limbo Protocol

2 Picnic: MPC for binary circuits II

Preprocessing:
▶ For each input or AND gate output wire α, random mask [λα] from seed.
▶ For XOR gate γ = α⊕ β, set [λγ] = [λα]⊕ [λβ]; local = free.
▶ For AND gate γ = α · β, need [λα,β], where λα,β = λα · λβ; not free.
▶ Pi can set λ

(i)
α,β at random, for i ∈ {1, . . . , N − 1}, but PN needs

λ
(N)
α,β = λα,β −

N−1⊕
i=1

λ
(i)
α,β.

▶ This λ
(N)
α,β has to be computed by P and added to aux;

1 bit/AND gate added to π.

13 MPCitH and the Limbo Protocol

2 Picnic: MPC for binary circuits III

Online:
▶ Public reconstruction of [λα] is done by broadcast of each λ(i)

α ;
▶ Parties begin with masked ẑα given by P and [λα] from seed.
▶ Computation proceeds by computing ẑγ for each gate (α, β)→ γ in C.
▶ XOR gate: ẑγ = ẑα ⊕ ẑβ; local = free.
▶ AND gate: locally compute

[s] = ẑα[λβ]⊕ ẑβ[λα]⊕ [λα,β]⊕ [λγ],

reconstruct s (1 bit of communication per party),
and compute ẑγ = s⊕ ẑαẑβ.

14 MPCitH and the Limbo Protocol

2 The AES Algorithm

AES is a 128-bit state block-cipher with key length of 128, 192 or 256 bits.
The round function is composed of four operations on the state:

1 AddRoundKey
2 SubBytes – only non-linear component, aka S-box
3 ShiftRows
4 Mix Columns

SubBytes applies the function s 7→
s−1 if s ̸= 0

0 o/w
over F28,

followed by a public affine transformation.

16 MPCitH and the Limbo Protocol

2 BBQ: MPC for arithmetic circuit I

fx(w) represented as arithmetic circuit C with values and gates (+ and ×).
[dDOS19, BN20]
▶ Wire value x ∈ F is randomly shared as ⟨x⟩ = (x(1), . . . , x(n)) such that

x =
n∑

i=1
x(i).

⟨x⟩ is n-out-of-n additive sharing of x.
▶ Each party Pi holds only a share x(i).
▶ Preprocessing prepares shared randomness.

Online phase computes + and × gates.

17 MPCitH and the Limbo Protocol

2 MPC for arithmetic circuit II
Operations with public constants are free, and so are additions between shared
values (because of additive sharing).
Only multiplication ⟨z⟩ = ⟨x · y⟩ costs preprocessing and communication.
Given triple (⟨a⟩, ⟨b⟩, ⟨c⟩) such that c = a · b, multiplication is:

1 Compute ⟨α⟩ = ⟨x− a⟩ and ⟨β⟩ = ⟨y − b⟩.
2 Open α and β.
3 Locally compute ⟨z⟩ = ⟨c⟩ − α · ⟨b⟩ − β · ⟨a⟩+ α · β.

Computing ⟨c⟩ adds log2 |F| bits to aux in π as PN needs

c(N) = a · b−
N−1∑
i=1

c(i).

18 MPCitH and the Limbo Protocol

2 Computing inversion in F for AES

Given S-box input ⟨s⟩ and random ⟨r⟩:
1 Compute ⟨s · r⟩.

2 Open s · r.

3 Locally compute ⟨s−1⟩ = (s · r)−1 · ⟨r⟩.

19 MPCitH and the Limbo Protocol

3 Outline

1 NIZKPoK from MPC in the Head with Preprocessing

2 MPCitH from Circuit Computation: Picnic and BBQ

3 MPCitH from Circuit Verification: Banquet and Limbo
Witness Extension and Verification
Banquet: Verification of Multiplications (and Inverses)
Limbo: Improved Multiplication Verification

20 MPCitH and the Limbo Protocol

3 Witness extension and verification
Idea from sacrificing techniques in MPC
▶ Prover “injects” the results of multiplications—no need to compute.
• The witness is extended with the outputs of non-linear gates.

▶ MPC parties execute a verification protocol—batching possibilities.
• e.g. Sacrifice one “suspicious” operation to verify another.

ZKPoK protocol sketch [BN20]
MPC parties receive “suspicious” multiplication results and verify them by
sacrificing “suspicious” random triples ⇒ no cut & choose.

0 ?= ⟨v⟩ = ϵ⟨z⟩ − ⟨c⟩+ α⟨b⟩+ β⟨a⟩ − α · β

22 MPCitH and the Limbo Protocol

3 Increased Number of Rounds
▶ In order to soundly sacrifice triples, the parties need a random challenge ϵ.
▶ This challenge comes from V , after suspicious data is committed.
▶ After, P still has to commit to MPC execution of sacrificing verification.

After receving ϵ, the MPC parties continue to check v
?= 0.

This yields a protocol with 5 or more rounds:
1 P commits to (views of) suspicious data;
2 V sends sacrificing (i.e. verification) challenge;
3 P commits to (views of) data verification protocol;
4 V sends party-opening challenge (as usual);
5 P opens selected parties.

23 MPCitH and the Limbo Protocol

3 Banquet: Verification of Inverses

P injects m “suspicious” inverses t = s−1, so MPCitH parties have pairs (s, t)
such that s · t = 1 allegedly.

Näıve verification protocol
For the ℓ-th inverse operation:

1: Set multiplication tuple (sℓ, tℓ, 1).
2: Sacrifice with triple (a, b, c).

This is expensive: each multiplication requires 1 correlated triple, and 1
sacrifice. 4|C|+ 1 elts. in total.

25 MPCitH and the Limbo Protocol

3 Banquet: Polynomial-based Verification I

Define polynomials S, T and P = S · T as:

S(1) = s1 T (1) = t1 P (1) = s1 · t1 = 1
...

S(m) = sm T (m) = tm P (m) = sm · tm = 1

Check P
?= S · T :

1: Sample random R← F \ {1, . . . , m};
2: Open P (R), S(R), T (R)
3: Check

P (R) ?= S(R) · T (R).

26 MPCitH and the Limbo Protocol

3 Banquet: Polynomial-based Verification II

Lemma (Schwartz–Zippel)

Let Q ∈ F[x] be non-zero of degree d ≥ 0; for any S ⊆ F,
PrR←S[Q(R) = 0] ≤ d

|S| .

▶ Here, Q = P − S · T ; non-zero iff tℓ ̸= s−1
ℓ for some ℓ.

▶ Opening S(R), T (R) leaks information ⇒ add random points S(0), T (0).
▶ P (and also Q) is of degree d = 2m and |S| = |F−m|, so

Pr
R←S

[Q(R) = 0] ≤ 2m

|F−m|
.

27 MPCitH and the Limbo Protocol

3 Polynomial-based Verification III

Improved protocol

1 Prover commits to S (randomized) and T .
2 Prover commits to P .
3 MPC parties open Q(R) = P (R)− S(R) · T (R), for random R.

2|C|+ 4 elts.; no cut & choose, no triple. Actually one triple, but hidden!

(Extra randomness r1, . . . , rm in S prevents further cheating.)

28 MPCitH and the Limbo Protocol

3 Generalized polynomial-based checking I

Previous protocol verifies:

(
r1s1 · · · rmsm

) 
t1
...

tm

 ?=
m∑

ℓ=1
rℓ.

Now, let m = m1 ·m2, and instead verify:

(
r1s1,k · · · rm1sm1,k

) 
t1,k
...

tm1,k

 ?=
m1∑
j=1

rj, k ∈ {0, . . . , m2 − 1}.

(sj,k and tj,k are rearranged from sℓ and tℓ.)
29 MPCitH and the Limbo Protocol

3 Generalized polynomial-based checking II

Define Sj and Tj as

Sj(k) = rj · sj,k Tj(k) = tj,k k ∈ {0, . . . , m2 − 1}
Sj(m2) = s̄j Tj(m2) = t̄j;

and let P = ∑m1
j=1 Sj · Tj.

Generalized verification protocol
1 Prover commits to Sj (randomized) and Tj;
2 Prover commits to P ;
3 MPC parties open Q(R) = P (R)−∑m1

j=1 Sj(R) · Tj(R), for random R;

Total: = |C|+ O(
√
|C|), instead of 2|C|.

30 MPCitH and the Limbo Protocol

3 Inner-product compression

Limbo [dOT21]:
several
compression
rounds.

Checking

⟨x̃, y⟩ ?= z

becomes

⟨x′, y′⟩ ?= z′.

r1x1 rmxm

y1 ym

z = ∑
rizi

a1 ak |ai| = ℓ

b1 bk

c1 ck
∑

ck = z

Receive challenge from V

x′1 x′ℓ

y′1 y′ℓ

z′

Questions?

Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, April
2015.

Carsten Baum and Ariel Nof.
Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 495–526.
Springer, Heidelberg, May 2020.

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg
Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primitives.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press,
October / November 2017.

Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart.
BBQ: Using AES in picnic signatures.
In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 669–692. Springer, Heidelberg, August 2019.

Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
Limbo: Efficient zero-knowledge MPCitH-based arguments.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 3022–3036. ACM Press, November 2021.

Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan
Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe,
Jean-Philippe Aumasson, Bas Westerbaan, and Ward Beullens.
SPHINCS+.
Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation.
In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

Daniel Kales and Greg Zaverucha.
Efficient lifting for shorter zero-knowledge proofs and post-quantum signatures.
Cryptology ePrint Archive, Report 2022/588, 2022.
https://eprint.iacr.org/2022/588.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai.
CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang.
FALCON.
Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel
Slamanig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov, and Daniel Kales.
Picnic.
Technical report, National Institute of Standards and Technology, 2020.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.

32 MPCitH and the Limbo Protocol

https://eprint.iacr.org/2022/588
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	NIZKPoK from MPC in the Head with Preprocessing
	MPCitH from Circuit Computation: Picnic and BBQ
	The Picnic Scheme: Binary Computation
	The BBQ Scheme: Arithmetic Computation

	MPCitH from Circuit Verification: Banquet and Limbo
	Witness Extension and Verification
	Banquet: Verification of Multiplications (and Inverses)
	Limbo: Improved Multiplication Verification

