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1 ZKPoK from MPC in the head

▶ Want efficient ZKPoK for arbitrary NP relation R.

▶ Given
1 x: public statement
2 w: P’s private witness,
want to convince V that R(x, w) = 1 without revealing w.

▶ [IKOS07]: multiparty computation (MPC) of fx(w) = R(x, w).
Simulated by P in the head and checked by V .

3 MPCitH and the Limbo Protocol



1 MPC in the head?
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1 NIZKPoK from MPC in the head
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1 Properties of the MPCitH Proof System

▶ Correctness: If MPC protocol for fx(w) is correct, then so is MPCitH.

▶ Soundness: If fx(w) ̸= 1 and opened parties show fx(w) = 1 then P
cheated during MPC protocol.
• Assuming com is binding, P can’t cheat for opened parties.
• Assuming com is binding, P must cheat on hidden party before it sees ch.
Soundness error is exactly 1

N . In practice N = 2, 4, 8, 16, 32, 64.

▶ Zero-knowledge: First, com must be hiding.
Second, V sees N − 1 transcripts, so MPC protocol must be
(N − 1)-private.
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1 Optimizations in Practice

▶ Commitments com1, . . . , comN can be compressed with a Merkle tree.
This means sending only 1 hash value in the first round, instead of N .

▶ Because 1
N is not cryptographically secure, the proof can be repeated in

parallel with different seeds to increase soundness exponentially.

▶ Opening N − 1 transcripts can use a lot of data (and make a large proof).
Using MPC protocol in the broadcast model means

“revealing tran1, tran3” ≈ “sending server2’s output;”
everything else can be computed by V from the seeds.
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1 MPCitH from MPC with Preprocessing

▶ Some MPC protocols use preprocessing / online paradigm.
• Preprocessing generates input-independent correlated randomness.
• Online phase uses it for low communication and input-dependent computation.

▶ This can be used for MPC in the head.
• aux: correlated randomness without preprocessing communication included in π.

So more correlated randomness = bigger proof π.

1 P simulates and commits to many preprocessing executions.
2 V challenges all-but-some of them to open and verify.

Indep. of w, so P reveals both master seed and correlated rand aux.
3 With the rest, P simulates and commits to online executions.
4 V challenges and verifies as before; uses less data as online phase is cheap.
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2 Outline

1 NIZKPoK from MPC in the Head with Preprocessing

2 MPCitH from Circuit Computation: Picnic and BBQ
The Picnic Scheme: Binary Computation
The BBQ Scheme: Arithmetic Computation

3 MPCitH from Circuit Verification: Banquet and Limbo
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2 The Picnic Signature Scheme [CDG+17, ZCD+20]

Given block cipher Fk(x) : K ×X → Y ,
▶ Gen: x

$← X = {0, 1}κ, k
$← K = {0, 1}κ, y ← Fk(x).

sk = k and pk = (y, x).
Security: function Gx : k 7→ Fk(x) is OWF with respect to k.

▶ Sign: Given message m, compute σ = π ← Provem(fy,x(k)).

fy,x(k) = {Fk(x) ?= y}

▶ Verify: verify the proof, including m in the challenge computation.

Choice of Fk: LowMC [ARS+15] as a binary circuit;
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2 Picnic: MPC for binary circuits I [CDG+17, ZCD+20]

fx(w) as binary circuit C with wires and gates (XOR and AND).
▶ Wire α, real value is zα, masked as ẑα = zα ⊕ λα for random λα ∈ {0, 1}.

▶ [λα] is n-out-of-n XOR secret sharing

λα =
n⊕

i=1
λ(i)

α ∈ {0, 1}.

▶ Each party Pi holds ẑα and a share λ(i)
α .

▶ Preprocessing prepares masks, online phase computes masked values ẑα.
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2 Picnic: MPC for binary circuits II

Preprocessing:
▶ For each input or AND gate output wire α, random mask [λα] from seed.
▶ For XOR gate γ = α⊕ β, set [λγ] = [λα]⊕ [λβ]; local = free.
▶ For AND gate γ = α · β, need [λα,β], where λα,β = λα · λβ; not free.
▶ Pi can set λ

(i)
α,β at random, for i ∈ {1, . . . , N − 1}, but PN needs

λ
(N)
α,β = λα,β −

N−1⊕
i=1

λ
(i)
α,β.

▶ This λ
(N)
α,β has to be computed by P and added to aux;

1 bit/AND gate added to π.
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2 Picnic: MPC for binary circuits III

Online:
▶ Public reconstruction of [λα] is done by broadcast of each λ(i)

α ;
▶ Parties begin with masked ẑα given by P and [λα] from seed.
▶ Computation proceeds by computing ẑγ for each gate (α, β)→ γ in C.
▶ XOR gate: ẑγ = ẑα ⊕ ẑβ; local = free.
▶ AND gate: locally compute

[s] = ẑα[λβ]⊕ ẑβ[λα]⊕ [λα,β]⊕ [λγ],

reconstruct s (1 bit of communication per party),
and compute ẑγ = s⊕ ẑαẑβ.
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2 The AES Algorithm

AES is a 128-bit state block-cipher with key length of 128, 192 or 256 bits.
The round function is composed of four operations on the state:

1 AddRoundKey
2 SubBytes – only non-linear component, aka S-box
3 ShiftRows
4 Mix Columns

SubBytes applies the function s 7→
s−1 if s ̸= 0

0 o/w
over F28,

followed by a public affine transformation.
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2 BBQ: MPC for arithmetic circuit I

fx(w) represented as arithmetic circuit C with values and gates ( + and × ).
[dDOS19, BN20]
▶ Wire value x ∈ F is randomly shared as ⟨x⟩ = (x(1), . . . , x(n)) such that

x =
n∑

i=1
x(i).

⟨x⟩ is n-out-of-n additive sharing of x.
▶ Each party Pi holds only a share x(i).
▶ Preprocessing prepares shared randomness.

Online phase computes + and × gates.
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2 MPC for arithmetic circuit II
Operations with public constants are free, and so are additions between shared
values (because of additive sharing).
Only multiplication ⟨z⟩ = ⟨x · y⟩ costs preprocessing and communication.
Given triple (⟨a⟩, ⟨b⟩, ⟨c⟩) such that c = a · b, multiplication is:

1 Compute ⟨α⟩ = ⟨x− a⟩ and ⟨β⟩ = ⟨y − b⟩.
2 Open α and β.
3 Locally compute ⟨z⟩ = ⟨c⟩ − α · ⟨b⟩ − β · ⟨a⟩+ α · β.

Computing ⟨c⟩ adds log2 |F| bits to aux in π as PN needs

c(N) = a · b−
N−1∑
i=1

c(i).
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2 Computing inversion in F for AES

Given S-box input ⟨s⟩ and random ⟨r⟩:
1 Compute ⟨s · r⟩.

2 Open s · r.

3 Locally compute ⟨s−1⟩ = (s · r)−1 · ⟨r⟩.
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3 Outline

1 NIZKPoK from MPC in the Head with Preprocessing

2 MPCitH from Circuit Computation: Picnic and BBQ

3 MPCitH from Circuit Verification: Banquet and Limbo
Witness Extension and Verification
Banquet: Verification of Multiplications (and Inverses)
Limbo: Improved Multiplication Verification
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3 Witness extension and verification
Idea from sacrificing techniques in MPC
▶ Prover “injects” the results of multiplications—no need to compute.
• The witness is extended with the outputs of non-linear gates.

▶ MPC parties execute a verification protocol—batching possibilities.
• e.g. Sacrifice one “suspicious” operation to verify another.

ZKPoK protocol sketch [BN20]
MPC parties receive “suspicious” multiplication results and verify them by
sacrificing “suspicious” random triples ⇒ no cut & choose.

0 ?= ⟨v⟩ = ϵ⟨z⟩ − ⟨c⟩+ α⟨b⟩+ β⟨a⟩ − α · β
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3 Increased Number of Rounds
▶ In order to soundly sacrifice triples, the parties need a random challenge ϵ.
▶ This challenge comes from V , after suspicious data is committed.
▶ After, P still has to commit to MPC execution of sacrificing verification.

After receving ϵ, the MPC parties continue to check v
?= 0.

This yields a protocol with 5 or more rounds:
1 P commits to (views of) suspicious data;
2 V sends sacrificing (i.e. verification) challenge;
3 P commits to (views of) data verification protocol;
4 V sends party-opening challenge (as usual);
5 P opens selected parties.
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3 Banquet: Verification of Inverses

P injects m “suspicious” inverses t = s−1, so MPCitH parties have pairs (s, t)
such that s · t = 1 allegedly.

Näıve verification protocol
For the ℓ-th inverse operation:

1: Set multiplication tuple (sℓ, tℓ, 1).
2: Sacrifice with triple (a, b, c).

This is expensive: each multiplication requires 1 correlated triple, and 1
sacrifice. 4|C|+ 1 elts. in total.
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3 Banquet: Polynomial-based Verification I

Define polynomials S, T and P = S · T as:

S(1) = s1 T (1) = t1 P (1) = s1 · t1 = 1
... ... ...

S(m) = sm T (m) = tm P (m) = sm · tm = 1

Check P
?= S · T :

1: Sample random R← F \ {1, . . . , m};
2: Open P (R), S(R), T (R)
3: Check

P (R) ?= S(R) · T (R).
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3 Banquet: Polynomial-based Verification II

Lemma (Schwartz–Zippel)

Let Q ∈ F[x] be non-zero of degree d ≥ 0; for any S ⊆ F,
PrR←S[Q(R) = 0] ≤ d

|S| .

▶ Here, Q = P − S · T ; non-zero iff tℓ ̸= s−1
ℓ for some ℓ.

▶ Opening S(R), T (R) leaks information ⇒ add random points S(0), T (0).
▶ P (and also Q) is of degree d = 2m and |S| = |F−m|, so

Pr
R←S

[Q(R) = 0] ≤ 2m

|F−m|
.
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3 Polynomial-based Verification III

Improved protocol

1 Prover commits to S (randomized) and T .
2 Prover commits to P .
3 MPC parties open Q(R) = P (R)− S(R) · T (R), for random R.

2|C|+ 4 elts.; no cut & choose, no triple. Actually one triple, but hidden!

(Extra randomness r1, . . . , rm in S prevents further cheating.)
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3 Generalized polynomial-based checking I

Previous protocol verifies:

(
r1s1 · · · rmsm

) 
t1
...

tm

 ?=
m∑

ℓ=1
rℓ.

Now, let m = m1 ·m2, and instead verify:

(
r1s1,k · · · rm1sm1,k

) 
t1,k
...

tm1,k

 ?=
m1∑
j=1

rj, k ∈ {0, . . . , m2 − 1}.

(sj,k and tj,k are rearranged from sℓ and tℓ.)
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3 Generalized polynomial-based checking II

Define Sj and Tj as

Sj(k) = rj · sj,k Tj(k) = tj,k k ∈ {0, . . . , m2 − 1}
Sj(m2) = s̄j Tj(m2) = t̄j;

and let P = ∑m1
j=1 Sj · Tj.

Generalized verification protocol
1 Prover commits to Sj (randomized) and Tj;
2 Prover commits to P ;
3 MPC parties open Q(R) = P (R)−∑m1

j=1 Sj(R) · Tj(R), for random R;

Total: = |C|+ O(
√
|C|), instead of 2|C|.
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3 Inner-product compression

Limbo [dOT21]:
several
compression
rounds.

Checking

⟨x̃, y⟩ ?= z

becomes

⟨x′, y′⟩ ?= z′.

r1x1 rmxm

y1 ym

z = ∑
rizi

a1 ak |ai| = ℓ

b1 bk

c1 ck
∑

ck = z

Receive challenge from V

x′1 x′ℓ

y′1 y′ℓ

z′
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