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What are ZK Proofs?
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Peggy: (x, w) Victor: x

Proof

Accept or Reject

A process in which a prover probabilistically convinces a verifier of the correctness
of a mathematical proposition, and the verifier learns nothing else.
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What are ZK Proofs?

Peggy: (x, w) Victor: x

x is true (x ∈ L)

Accept or Reject

x = CircuitSat = (There exists w s.t. C(w) = 1) w
x = (There exist (p, q) s.t. N = pq) w = (p, q)

x= (I know sk) sk

A process in which a prover probabilistically convinces a verifier of the correctness
of a mathematical proposition, and the verifier learns nothing else.
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Properties of ZKProofs

Peggy: (x, w) Victor: x

π

b ∈ {0, 1}

Completeness. If Peggy and Victor behave honestly, the proof will be
accepted.

Soundness. Peggy cannot prove false statements.

Zero-Knowledge. Victor learns nothing beyond the truth of the statement.

Of Knowledge. Victor is conviced that the prover knows a witness for the
statement being true.
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What is a “good” ZK Proof

Performance measured in different parameters.

Peggy: (x, w) Victor: x

π

b ∈ {0, 1}

Expressivity.
Prover complexity/ Verifier complexity.
Proof size.
Weaker/ Stronger Computational assumptions.
Need for a trusted Setup.
Amount of interaction.
Of Knowledge.
Private vs Public Verification...
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(Pairing-Based) (zk)-SNARKs
ZK-Succinct Non-Interactive Arguments of Knowledge

Language: circuit satisfiability.
Verifier: super efficient (and public).
Proof: succinct.
Long Structured Reference String.
Very strong Assumptions
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ZK Proofs History: The Hunting of the SNARK

1989 – Interactive Proof-Systems [GMR89]

– (...)

2010 – Groth. Succinct argument without PCPs (42 bilinear group elements)

2013 – QAPs: ZK friendly characterization of NP, linear SRS [GGPR13]
Implementation: Pinocchio: Nearly Practical Verifiable Computation” [PGHR13]

2014 – ZeroCash

2016 – Groth. Most efficient zk-SNARK (3 bilinear group elements)

.... – and so much more...
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Non-universal SNARKs: Technical
core
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Overview
Information Theoretic Step: statement is encoded in a convenient way1.

CircuitSat Relation Algebraic Relation Polynomial Relation
Circuit, c⃗ Rank 1 Constraint Quadratic Arithmetic

System Program

→
L, R s.t.

c⃗ satisfies circuit iff
L⃗c ◦ R⃗c = c⃗

→

t(X), {vi(X), wi(X), λi(X))}i
s.t.⃗c satisfies circuit⇔

t(X) divides
(∑i civi(X)) (∑i ciwi(X))

−∑i ciλi(X)

Computational Step: statement is compressed.

Quadratic Arithmetic Program SNARK

t(X), {vi(X), wi(X), λi(X)}i Compiler−−−−−−→ SRS, π

1For ease of presentation in this talke we R1CS to refer to a simpler form called R1CS-lite
due to Campanelli et al. Asiacrypt’21.
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From Circuit to Algebraic Relations

C : Z4
p → Zp, C(c1, c2, c3, c4) = (c1 + c2)(2c2(c3 + c4)).

a⃗, b⃗, c⃗: left, right and output wires for multiplication gates.

c1 c2 c3 c4

+ ×2 +

×

×

c6

c5

c5 = a5b5

c6 = a5

a5 = (2c2)

b5 = (c3 + c4)

a6 = (c1 + c2)

b6 = c5

Hadamard Product Relation:
(

a5
a6

)
◦
(

b5
b6

)
=

(
c5
c6

)
Linear Relations:(

a5
a6

)
=

(
0 2 0 0 0
1 1 0 0 0

)
c⃗ = F⃗c,

(
b5
b6

)
=

(
1 1 0 0 0
0 0 0 0 1

)
c⃗ = Gc⃗.
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From Circuit to Algebraic Relations, simplified

c1 c2 c3 c4

+ ×2 +

×

×

c6

c5

c5 = a5b5

c6 = a5

a5 = (2c2)

b5 = (c3 + c4)

a6 = (c1 + c2)

b6 = c5

Hadamard Product Relation: a⃗ ◦ b⃗ =



a0
a1
a2
a3
a4
a5
a6


◦



b0
b1
b2
b3
b4
b5
b6


=



1
c1
c2
c3
c4
c5
c6


Linear Relations:

a⃗ = L⃗c, b⃗ = R⃗c, where L =

(
I5×5

F

)
, R =

(
Ĩ
G

)
, Ĩ =

(⃗
15 05×4

)
.
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From Circuit to Algebraic Relations, Example

C : Z4
p → Zp, C(c1, c2, c3, c4) = (c1 + c2)(2c2(c3 + c4)).

Statement: There exists c3, c4 such that C(1, 2, c3, c4) = 84.
1 Public Input Relations:

c0 = 1, c1 = 1, c2 = 2, c6 = 84.
2 Hadamard Product Relation:

a⃗ ◦ b⃗ = c⃗
3 Linear Relations:

a⃗ = L⃗c, b⃗ = R⃗c.

Witness: c⃗ = (1, 1, 2, 3, 4, 28, 84)⊤ ∈ (Fp)7.
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Hadamard Product and Lagrange Interpolation

Let R = {r0, . . . , rm−1} multiplicative subgroup of F∗p, λi(X) ith Lagrange
interpolation polynomial:

λi(X) = ∏
j ̸=i

(X− rj)

(ri − rj)
, λi(rj) =

{
1 i = j
0 i ̸= j

, t(X) = ∏
j
(X− rj)

λ(X)⊤ = (λ0(X), . . . , λm−1(X)).

We can encode vectors as polynomials to do “linear algebra”with polynomials:

y⃗ = (y0, . . . , ym−1)←→ y(X) =
m−1

∑
i=0

yiλi(X) = λ(X)⊤y⃗ Obs: y(rj) = yj

Hadamard Product can be encoded as divisibility relation: for any c⃗, a⃗, b⃗,

a(X)b(X)− b(X) = H(X)t(X)⇐⇒ c = a⃗ ◦ b⃗
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Linear Relations as Polynomial Relations

L =

 v0(r0) . . . v6(r0)
...

...
v0(r6) . . . v6(r6)

 ⇐⇒ λ(X)⊤L = (v0(X), . . . , v6(X)),

R =

 w0(r0) . . . w6(r0)
...

...
w0(r6) . . . w6(r6)

 ⇐⇒ λ(X)⊤R = (w0(X), . . . , w6(X)),

a⃗ = L⃗c AND b⃗ = R⃗c ⇐⇒

a(X) = λ(X)⊤ a⃗ = λ(X)⊤L⃗c =
6

∑
j=0

cjwj(X) AND

b(X) = λ(X)⊤⃗b = λ(X)⊤R⃗c =
6

∑
j=0

cjwj(X)
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From Algebraic Relations to Polynomial Relations
In summary

Public Input Relation:

c0 = 1, c1 = 1, c2 = 2, c6 = 84.

Hadamard Relation:

a(X)b(X)− c(X) = H(X)t(X).

Linear Relations: There exists c⃗ such that

a(X) =
6

∑
j=0

cjvj(X) b(X) =
6

∑
j=0

cjvj(X) c(X) =
6

∑
j=0

cjλj(X)

We discuss how to prove linear relations next.
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Bilinear map or Pairing
Compressing or Computational Step

Implicit notation: [a]i = aPi.

Definition
G1, G2, GT cyclic groups of order p where DLOG is hard, P1,P2 generators of
G1, G2 respectively, e : G1 ×G2 → GT is a non-degenerate bilinear map (or
pairing) if

for all ([α]1, [β]2) ∈ G1 ×G2,

e([α]1, [β]2) = e(P1,P2)
αβ (Bilinearity),

e([α]1, [β]2) ̸= 1GT (Non-degeneracy)
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(Bilinear) groups: What can we efficiently do?

(Recall: Implicit notation: [a] = aP , group of order p).

Essentially all we can efficiently do: given [x1], . . . , [xn], compute
combinations with known linear coefficients ci ∈ Zp:

∑ ci[xi].

In particular, given some element [p(τ)] a polynomial p(X) with known
coefficients ci ∈ Zp, and [1], [τ], . . . , [τq]:

If p(X) is divisible by t(X): [p(τ)/t(τ)] easy to compute.

h(X) := p(X)/t(X), [p(τ)/t(τ)]1 = ∑ hi[τ
i].

If p(X) is not divisible by t(X): [p(τ)/t(τ)] hard to compute (q-Strong Diffie
Hellman type of assumption).
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SNARK construction (an abstraction of
[ParGenHowRay13])
Setup: Chooses τ ← Zp, evaluates t(τ), {vi(τ), wi(τ), λi(τ)}i and appends
[t(τ)]1,2, [vi(τ)]1, [wi(τ)]2, [λi(τ)]1, [τi]1,2 to SRS.

Prover (SRS, c⃗): Samples δ1, δ2, δ3 ← Z∗p, and doing linear combination of
elements of SRS computes:

A = [a(τ)+δ1t(τ)]1 B = [b(τ)+δ2t(τ)]2,

C = [c(τ)+δ3t(τ)]1, and

1 A proof H that divisibility relation holds at point τ.

H = [
1

t(τ)
(
(a(τ)b(τ)− c(τ)+(δ1δ2 − δ3)t(τ)

)
]1,

2 A proof Π that A, B, C are well formed, in “span” of {vi(τ)} (resp. {wi(τ)},
{λi(τ)} for same witness.)

Verifier (SRS, H, A, B, C):
1 Checks well-formedness of A, B, C + divisibility at point τ using pairings

e(H, [t(τ)]2)
?
= e(A, B)e(C, [1]2)−1.
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SNARK construction: Linear Relations
(Simplified)

Proof that A, B, C is in the span of {vi(τ)}, {wi(τ)}, {λi(τ)} (with same c⃗):
1 Include in SRS:(

{[αvi(τ) + βwi(τ) + γλi(τ)]1}, [α]2, [β]2, [γ]2
)

2 Prover:

π′ =
6

∑
i=0

ci[(αvi(τ) + βwi(τ) + γλi(τ))]1

3 Verifier:
e(A, [α]2) + e([β]1, B) + e(C, [γ]2)

?
= e(π′, [1]2).
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SNARK construction: Security

Perfect Zero-Knowledge: Randomization! (proof distribution is uniform
conditioned on being accepted by Verifier.)

Soundness:
1 Extract a “witness candidate”⃗c from proof of well formedness, i.e.

A = ∑ civi(τ), B = ∑ ciwi(τ) C = ∑ ciλi(τ).

2 If adversary breaks soundness, p(X) = (∑ civi(X))(∑ ciwi(X))− (∑ ciλi(X))
not divisible by t(X), but adversary has computed p(τ)/t(τ) in the exponent!!

For soundness, it is crucial that s is secret!!
3 Linear Relations:

For soundness, it is crucial that α, β, γ are secret and tied together to
polynomials {vi(X), wi(X), λi(X)}. They cannot be reused for the SRS for

another circuit!!!
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SNARK construction: Security II

Step 2 and 3 are standard: for Step 1, we need a non-falsifiable assumption.

Definition (q-Power Knowledge of Exponent Assumption)
For every PPT A which, on input [1]1, [τ]1, . . . , [τq]1 and
[α]1, [α]2, [ατ]1, . . . , [ατq]1, outputs V, αV ∈ G1, there exists a PPT extractor
which outputs c1, . . . , cq ∈ Zp such that V = ∑ ciτ

i.

Non-falsifiable Assumption. Black-box extraction is information theoretically
impossible, would also mean the SNARK contradicts known impossibility results

(e.g. [GenWic11])
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Remarks

Construction generalizes to case where some c1, . . . , cℓ are public (as in
example)

Simulation: given τ ∈ Zp, we can simulate any proof by dividing by t(τ)!!

Best zk-SNARK construction by Groth 2016 based on similar ideas.

m Circuit size, ℓ public inputs,
Prover computation O(m log m).
Verifier’s computation 3 Pairings + O(ℓ) exponentiations.
Constant communication complexity! (just 3 group elements in Groth16)
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Setups
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Motivation: SRS

Observation
The SRS in the previous SNARK consists of two pieces: (given as points in an
elliptic curve)
(1) A part that is circuit-independent, or universal : 1, τ, τ2, . . .

(2) A part that is circuit-dependent: α, β, γ, {αvj(τ) + βwj(τ) + γλj(τ)}j=1,...,m

(1) Can be generated once for all circuits (2) needs to be generated for each
circuit.
In both cases, the information used to generate the SRS can be used to
completely break security.
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In the SRS generator we trust...

Z. Wilcox (ZCash) on his knees destroying a computer after parameter generation. https://z.cash/technology/paramgen/

SNARKs require a trusted party to generate the parameters.
Knowledge of randomness to generate parameters: complete failure.
Solution: distribute trust.
Two problems: how to update an SRS? How can we avoid doing this
expensive setup for each circuit?
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SNARKs: Updatable Model [GroKohMalMeiMie18]
a b

c d a b c d

Multiparty Computation Model Updatable Model

Updatable Model: for soundness it suffices that one party is honest, and SRS
can always be updated NI.

In [BowGabMie17]: after a trusted setup phase to generate [τ], [τ2], . . . , [τq],
circuit dependent setup is updatable.

[GroKohMalMeiMie18]: Universal and (single phase) updatable setup:
universal setup is updatable, circuit dependent setup is public, no secrets
involved (just preprocessing.)
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Universal and Updatable SNARKs:
Technical Core
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From Circuit to Algebraic Relations, simplified

c1 c2 c3 c4

+ ×2 +

×

×

c6

c5

c5 = a5b5

c6 = a5

a5 = (2c2)

b5 = (c3 + c4)

a6 = (c1 + c2)

b6 = c5

Hadamard Product Relation:
a⃗ ◦ b⃗ = c⃗

Universal

Linear Relations:

a⃗ = L⃗c, b⃗ = R⃗c, or equivalently,
(
−I 0 L
0 −I R

)a⃗
b⃗
c⃗

 = 0⃗.

Previous techniques to prove this relation required circuit-dependent trusted
parameters!! New techniques for Linear Relations are necessary.
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From Algebraic Relations to Polynomials
Inner Product Relations and the Univariate Sumcheck

R = {r0, . . . , rm−1} ⊂ F∗p, multiplicative subgroup

λi(X) = ∏
j ̸=i

(X− rj)

(ri − rj)
, t(X) = ∏

j
(X− rj).

Algebraic Formulation Polynomial Formulation

Vector y⃗ = (y0, . . . , ym−1) Polynomial ∑m−1
i=0 yiλi(X)

[Ben-Sasson et al. 18]2
Inner product z = w⃗ · y⃗ w(X)y(X)−m−1z = XR(X) + H(X)t(X)

for some R(X) s.t. deg R(X) ≤ m− 2.

2In [RZ21] new proof where R is not necessarily a subgroup.
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From Algebraic Relations to Polynomials
Inner Product Relations and the Univariate Sumcheck

Algebraic Formulation Polynomial Formulation

Vector y⃗ = (y0, . . . , ym−1) Polynomial ∑m−1
i=0 yiλi(X)

[Ben-Sasson et al. 18]
Inner product z = w⃗ · y⃗ w(X)y(X)−m−1z = XR(X) + H(X)t(X)

for some R(X) s.t. deg R(X) ≤ m− 2.

Proof: Let P(X) = ∑ wiyiλi(X). It holds that w(X)y(X) = P(X) + H(X)t(X).
But, evaluating at 0, and using that λi(0) = m−1 for all i, if R is a subgroup of
roots of unity, P(0) = m−1y⃗ · w⃗. Therefore, P(X)− zm−1 is 0 at 0 if and only if
z = y⃗ · w⃗.
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How to Prove Many Inner Product Relations

Problem. No efficient extension of the univariate sumcheck to prove m inner
product relations.
Solution. Prove one sufficiently random relation:

Checking if Mx⃗ = 0⃗ vs Checking if (⃗v⊤M) · x⃗ = 0⃗,
where v⃗

is sufficiently random!!

Problem Although matrix M is public, a sublinear verifier cannot afford to
sample a random vector in rowspace of M (since in the case of interest the
number of rows of the matrix is two times the size of the circuit!)
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From Algebraic Relations to Polynomials
Given M ∈ Fm×m, define the bivariate polynomial:

P(X, Y) = (λ0(Y), . . . , λm−1(Y)) M

 λ0(X)
...

λm−1(X)

 =
m−1

∑
i=0

m−1

∑
j=0

mijλi(Y)λj(X)

Given random x, the vector

d⃗ = (λ0(x), . . . , λm−1(x)) M

is a sufficiently random vector in the row span of M.

The partial evaluation

D(X) = P(X, x) =
m−1

∑
i=0

diλi(X) = (λ0(x), . . . , λm−1(x)) M

 λ0(X)
...

λm−1(X)


is a polynomial encoding of d⃗ in the Lagrange basis.
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Polynomial Relations for a Universal SNARK

Define P−I(X, Y), PL(X, Y) and PR(X, Y) bivariate encodings of matrices
−I, L, O.

Compute a(X), b(X), b(X) the polynomial encoding of a⃗, b⃗, c⃗ and prove the
Hadamard product relation a⃗ ◦ b⃗ = c⃗.

Verifier sends challenge x.

Prover samples polynomial DI(X) = PI(X, x) and PL(X, x) which is the
encoding of random vectors d⃗−I and d⃗L in the span of −I and L.

Prover shows that the inner product of d⃗−I · a⃗ = d⃗L · c⃗.

Prover repeats last two steps for proving b⃗ = R⃗c.

Problem: How can verifier test that D(X)′s are correct?
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Prover shows that the inner product of d⃗−I · a⃗ = d⃗L · c⃗.

Prover repeats last two steps for proving b⃗ = R⃗c.

Problem: How can verifier test that D(X)′s are correct?
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Checkable Subspace Sampling [RafZap21]
Definition

Offline phase: A M is preprocessed and encoded as a set of polynomials.
Online phase:

Sampling:
Interactive protocol in which Verifier sends random challenge α and Prover
outputs polynomial D(X).

Prove Sampling:
Prover computes proof π that D(X) is sampled correctly.

Decision phase: Verifier accepts iff D(X) encodes the vector v⃗⊤α M for some
sufficiently random vector v⃗α determined by challenge α.

Sampling in the rowspace is delegated to the prover, who needs to show
that it is sampling the vector according to the coins of the verifier.
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Which matrices have efficient Checkable Subspace
Sampling?
Results of [RZ21]

Sparse Matrices (Marlin)
Matrices with a bounded number of non-zero elements per column.
Matrices with Low Tensor Rank.
Any combination of those.
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Example CSS

M = (mij) ∈ Fm×m a matrix with one non-zero element per column. Number
non-zero values from 1 to m such that mrow(ℓ),ℓ ̸= 0 for some functions
val : [m]→ F, row : [m]→ [m].

Offline Phase: On input Fp, M, the indexer outputs {v1(X), v2(X)},
where

v1(X) =
m

∑
ℓ=1

rrow(ℓ)λℓ(X), v2(X) = m−1
m

∑
ℓ=1

val(ℓ)rrow(ℓ)λℓ(X).

Online Phase:
Sampling Phase: The verifier outputs x ← F and prover sends
D(X) = P(X, x).
Proving Phase: the prover finds and outputs H(X) such that

D(X)
(

x− v1(X)
)
= t(x)v2(X) + H(X)t(X)
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Conclusion

We have identified the main challenges in building updatable and universal
SNARK.
In particular, we have explained that there is a certain building block in these
SNARKs, a Checkable Subspace Sampling subargument, that is particularly
challenging to build.
The CSS Example is for a very simple matrix, but it gets more complex for
more expressive types of matrices.
In particular, the cost of the CSS represents a significant part of the prover
cost in several universal and updatable SNARKs (like Sonic, Marlin, Lunar,
Basilisk, Counting Vampires), where it is fundamental to guarantee sublinear
verification.
We did not cover Plonk, which is probably the most well known universal and
updatable SNARK and which takes a different approach to deal with Linear
Relations.
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