
FLUID MPC: Secure Multiparty Computation
with Dynamic Participants

Aarushi Goel

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

Adversary learns nothing beyond the output of the function, i.e.,
𝑦 = 𝑓(𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%)

• MPC protocols are becoming increasingly efficient.

MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute large complex functionalities such as:

MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute large complex functionalities such as:

MPC and Emerging Applications

Training machine learning
algorithms on massive,

distributed datasets.

• MPC protocols are becoming increasingly efficient.
• Can be used to compute large complex functionalities such as:

MPC and Emerging Applications

Training machine learning
algorithms on massive,

distributed datasets.

Simulating large RAM
programs on distributed

datasets

• MPC protocols are becoming increasingly efficient.
• Can be used to compute large complex functionalities such as:

MPC and Emerging Applications

Training machine learning
algorithms on massive,

distributed datasets.

Simulating large RAM
programs on distributed

datasets

Issue: Evaluating these functionalities could take up to several hours or even days.

Problem with Static MPC
(Fixed Participants)

Entire Protocol Duration

Problem with Static MPC
(Fixed Participants)

Entire Protocol Duration

Problem with Static MPC
(Fixed Participants)

…

After some time, in the middle of the protocol

Entire Protocol Duration

I need to leave
because of other

commitments

Problem with Static MPC
(Fixed Participants)

…

After some time, in the middle of the protocol

Entire Protocol Duration

I need to leave
because of other

commitments

Drops out because of
lack of resources

Problem with Static MPC
(Fixed Participants)

…

After some time, in the middle of the protocol

Entire Protocol Duration

I need to leave
because of other

commitments

Drops out because of
lack of resources

Problem with Static MPC
(Fixed Participants)

Requiring all participants to stay online throughout the computation is an
unrealistic expectation.

…

After some time, in the middle of the protocol

Entire Protocol Duration

I need to leave
because of other

commitments

Drops out because of
lack of resources

Main Question

Requiring all participants to stay online throughout the computation is an
unrealistic expectation.

…

After some time, in the middle of the protocol

Can we design MPC protocols with Dynamic Participants?

MPC with Dynamic Participants

A group of parties start the computation

MPC with Dynamic Participants

After some time two parties have to leave

MPC with Dynamic Participants

And a new party wants to join the
computation

MPC with Dynamic Participants

The previous group of parties securely
distributes information about the

computation so far, to the new group

MPC with Dynamic Participants

Given this information, the new group
continues with the rest of the computation

MPC with Dynamic Participants

MPC with Dynamic Participants

This reduces the burden of computation on individual parties

MPC with Dynamic Participants

This reduces the burden of computation on individual parties

Parties with low computational resources can also participate for
a small time

MPC with Dynamic Participants

This reduces the burden of computation on individual parties

While parties with more time and computational resources can
help with the computation for a longer time

Parties with low computational resources can also participate for
a small time

MPC as a Service

• Allows Participants to join and leave at will
• Reduces burden of computation on individual

participants

MPC with Dynamic Participants

MPC as a Service

• Powered by volunteer nodes- that can come
and go as they wish.

• Very Successful!

Dynamic Peer-to-peer networks.

• Allows Participants to join and leave at will
• Reduces burden of computation on individual

participants

MPC with Dynamic Participants

Compatible with each other

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

Volunteer networks capable of private computation.

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

Volunteer networks capable of private computation.

MPC-as-a-service framework - anyone can volunteer to participate
irrespective of their computational power or availability.

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

Volunteer networks capable of private computation.

MPC-as-a-service framework - anyone can volunteer to participate
irrespective of their computational power or availability.

Clients can delegate computations to such services.

Player Replaceability

• Byzantine Agreement [Mic17, CM19] : After every round, the current set of
players can be replaced by new ones.

• Blockchains [GHMVZ17]: This idea is used in the design of Algorand.
• Helps mitigate targeted attacks on chosen participants after their identity is

revealed.

• YOSO [GHKMNRY21]: Extended the above notion to MPC.
d be great if this idea can be extended to MPC.

Other Related Work

• Proactive MPC [OY91]
• Static participants
• Mobile adversaries

• Secret Sharing with dynamic participants [GKMPS20, BGGHKLRR20]
• Computational setting
• Guaranteed output delivery

Contributions

Fluid MPC: A formal model for MPC with dynamic participants [CGGJK21]

Semi-honest and maliciously secure Fluid MPC protocols

Perfectly secure semi-honest

Statistically secure with abort

Perfectly secure with guaranteed output delivery (positive/negative)

[CGGJK21]

[DGL23]

[Choudhuri-G-Green-Jain-Kaptchuk 21]

[Deligios-G-Liu-Zhang 23]

Modeling Dynamic Computation

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage

Clients pre-process
their inputs and

hand them to the
servers

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage Execution Stage

Clients pre-process
their inputs and

hand them to the
servers

Dynamic servers participate to compute the function

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage Execution Stage Output Stage

Clients pre-process
their inputs and

hand them to the
servers

Dynamic servers participate to compute the function Clients reconstruct
the output of the

function

Modeling Execution Stage

Execution Stage

Modeling Execution Stage

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2… …

Modeling Execution Stage

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2… …

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2… …

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Committee 𝑆&

… …

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Committee 𝑆& Committee 𝑆&'!

… …

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Committee 𝑆& Committee 𝑆&'!

… …

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

… …

Fluid MPC Protocol

Protocol Execution given the Committees Committee Selection/Corruption

Fluid MPC Protocol

Protocol Execution given the Committees Committee Selection/Corruption

Division of Work

Fluidity

Division of Work

Division of Work

Committee 𝑆! Committee 𝑆% Committee 𝑆$

Circuit

Division of Work

Committee 𝑆! Committee 𝑆% Committee 𝑆$

Circuit
Part of the circuit
computed by 𝑆!

Part of the circuit
computed by 𝑆"

Part of the circuit
computed by 𝑆# …

Division of Work

Committee 𝑆! Committee 𝑆% Committee 𝑆$

Circuit
Part of the circuit
computed by 𝑆!

Part of the circuit
computed by 𝑆"

Part of the circuit
computed by 𝑆# …

Per-committee work independent of the depth of the circuit

Fluidity
Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

Fluidity is the minimum commitment a server needs to make for participating in the protocol.

Measured by the number of rounds in an epoch

Maximal Fluidity
Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

1 Round of
unidirectional

hand-off phase

Essentially, each party is only
required to communicate in one

round

1 round epoch

Silent compute
phase

Fluid MPC Protocol

Committee Formation

Committee Corruption

Committee Selection/CorruptionProtocol Execution given the Committees

Division of Work

Fluidity

Fluid MPC Protocol

Committee Formation

Committee Corruption

Committee Selection/Corruption

\

Protocol Execution given the Committees

Division of Work

Fluidity

\

Committees: When are they formed?

Execution Stage

Too Restrictive!

Static Committee Formation: Committee for each epoch is known at the start of the protocol.

Epoch Committee

1

2

3

Input Stage

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

Committee 𝑆"

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Committees: How are they formed?

On-the-fly Committee Formation:

Volunteer: Anyone who volunteers can join the computation (Corruption threshold is difficult to enforce)
Elected: Anyone can nominate themself and an election process decides which nominees will participate

(e.g., [BGGHKLRR20, GHMNY20] enforces it using proof-of-stake blockchains)

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Committees: How are they formed?

On-the-fly Committee Formation:

Volunteer: Anyone who volunteers can join the computation (Corruption threshold is difficult to enforce)
Elected: Anyone can nominate themself and an election process decides which nominees will participate

(e.g., [BGGHKLRR20, GHMNY20] uses proof-of-stake blockchains)

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Committees: Size

Fixed-Sized Committees

Committees: Size

Variable-Sized Committees

Committees: Overlap

Committees: Overlap

Restricted or No overlap of parties across committees

Committees: Overlap

Unrestricted overlap of parties across committees

Fluid MPC Protocol

Committee Formation

Committee Corruption

Committee Selection/Corruption

\

Protocol Execution given the Committees

Division of Work

Fluidity

\

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Static Corruption

Corrupted at the
time of committee

formation

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Effect of Committee Corruption on Prior Epochs
What effect does corrupting a server have on the prior epochs where it participated?

What effect does corrupting a server have on the prior epochs where it participated?

Adv learns this private state

If there is overlap across committees, a server can only be corrupted if it does not violate the corruption threshold
of prior epochs.

Effect of Committee Corruption on Prior Epochs

Fluid MPC Protocols

Perfectly secure semi-honest [CGGJK21]

Statistically secure with abort [CGGJK21]

Perfectly secure with guaranteed output delivery [DGL23]

Fluid MPC Protocol
(Semi-Honest)

Semi-Honest BGW [GRR98] can be adapted to obtain a maximally Fluid semi-honest MPC

Semi-honest BGW [GRR98]

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔
Gate-by-Gate evaluation on secret

shared inputs

Semi-honest BGW [GRR98]

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input sharing: 𝑡-out-of-𝑛 shares of inputs

Semi-honest BGW [GRR98]

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

Compute
[𝑓](= [𝑐](+ [𝑑](

Gate-by-Gate Evaluation

Input sharing: 𝑡-out-of-𝑛 shares of inputs

Semi-honest BGW [GRR98]

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

𝑔 ← [𝑔](

Compute
[𝑓](= [𝑐](+ [𝑑](

Output Reconstruction

Gate-by-Gate Evaluation

Input sharing: 𝑡-out-of-𝑛 shares of inputs

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Execution Stage

Layer 1

Layer 2

Layer-wise computations
Committee 𝑖 computes layer 𝑖

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

𝑔 ← [𝑔](
Output Phase

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

𝑔 ← [𝑔](
Output Phase

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Division of
Work

Maximal
Fluidity

Additive Attack Paradigm [GIPST14]

Most secret sharing based semi-honest protocols are
secure against malicious adversaries up to additive attacks:

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Fluid MPC Protocol
(Security with Abort)

A compiler that that transforms “certain” semi-honest Fluid MPC protocols into
maliciously secure protocols:

• security with abort
• 4 × communication complexity
• Preserves fluidity

Additive Attack Paradigm [GIPST14]

Most secret sharing based semi-honest protocols are
secure against malicious adversaries up to additive attacks:

X +

X

𝑎 + 𝜀$ 𝑏 + 𝜀% 𝑐 + 𝜀& 𝑑 + 𝜀'

𝑒 + 𝜀(𝑓 + 𝜀)

𝑔 + 𝜀*

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

𝜀 values are independent of the actual wire values

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

Modern efficient maliciously secure protocols rely on this additive attack paradigm.

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest execution

X +

X

𝑟𝑒

𝑟𝑎 𝑟𝑏

𝑟𝑓

𝑟𝑔

𝑟𝑑𝑟𝑐

Semi-honest execution

Dual execution: On actual inputs and
randomized inputs.

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

Modern efficient maliciously secure protocols rely on this additive attack paradigm.

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest execution

X +

X

𝑟𝑒

𝑟𝑎 𝑟𝑏

𝑟𝑓

𝑟𝑔

𝑟𝑑𝑟𝑐

Semi-honest execution

Check for correctness by comparing a random
linear combination of all the intermediate

values at the end.

Dual execution: On actual inputs and
randomized inputs.

𝑟(𝛼8𝑎 + 𝛼9𝑏 +⋯+ 𝛼:𝑔)
=?=

𝛼8𝑟𝑎 + 𝛼9𝑟𝑏 +⋯+ 𝛼:𝑟𝑔

Semi-honest Fluid BGW

Maliciously secure Fluid MPC

Maliciously secure Fluid MPC

Additive Attack Paradigm?

Semi-honest Fluid BGW

Maliciously secure Fluid MPC

Maliciously secure Fluid MPC

Additive Attack Paradigm?

We Show: Additive Attack Paradigm extends to the Fluid MPC setting

Maliciously secure Fluid MPC

If the linear combination is computed at the end

All intermediate values must be passed along till the
end of the protocol.

Can we use known techniques in the additive attack paradigm?

If the linear combination is computed
incrementally layer-by-layer

Random 𝛼 values used in the linear combination
will have to be generated on the fly, which may take

many rounds.

Division of
Work

Maximal
Fluidity

Division of
Work

Maximal
Fluidity

Maliciously Secure Fluid MPC: Our Idea

+

XXXXX

XXX +

XXX + +

…

…

…

… … … … …
𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧*% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼*𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧*% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼*𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!

𝑢, = 0

𝑢! = 𝑢, + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼*𝛽!𝑧*!

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧*% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼*𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!

𝑢, = 0

𝑢! = 𝑢, + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼*𝛽!𝑧*!

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧*% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼*𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!

𝑢, = 0

𝑢! = 𝑢, + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼*𝛽!𝑧*!

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧*% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼*𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!

𝑢, = 0

𝑢! = 𝑢, + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼*𝛽!𝑧*!

Epoch 1

Epoch 2

Maliciously Secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼*𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥) 𝑥%*+! 𝑥%*

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧*!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧*% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼*𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼*𝛽!

𝑢, = 0

𝑢! = 𝑢, + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼*𝛽!𝑧*!

Epoch 1

Epoch 2

Division of
Work

Maximal
Fluidity

Fluid MPC Protocol
(Guaranteed Output Delivery)

[DGL23]
1. Perfectly secure maximally fluid protocol for 𝑡 < 𝑛/3 corruptions in each

committee.
2. Information-theoretic, maximally-fluid MPC with guaranteed output delivery is

impossible with 𝑡 > 𝑛/3 corruptions in each committee.
3. A computationally secure maximally fluid protocol for 𝑡 < 𝑛/2 corruptions in

each committee.

Challenges and Main Idea

• Player elimination doesn’t work
• Regular secret sharing is not enough, need verifiable secret sharing
• VSS with maximal fluidity:
• 1 round VSS is impossible [PCRR09]
• Known VSS protocols are not stateless

Summary [CGGJK21, DGL23]

Fluid MPC: A formal model for MPC with dynamic participants.

Construct semi-honest and malicious Fluid MPC protocols that
have maximum fluidity.

Thank You!

